Home
Class 14
MATHS
If x^(6)+1/(x^(6))=k(x^(2)+1/(x^(2))) th...

If `x^(6)+1/(x^(6))=k(x^(2)+1/(x^(2)))` then k is equal to

A

`(x^(2)-1+1/(x^(2)))`

B

`(x^(4)-1+1/(x^(4)))`

C

`(x^(4)+1+1/(x^(4)))`

D

`(x^(4)-1-1/(x^(4)))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If the value of the integral int_(0)^(1//2) (x^(2))/((1-x^(2))^(3//2)) dx is (k)/(6) then k is equal to :

int((x^(2)-x-1)/(x)+1)^(K+7)((x^(2)+1)/(x^(2)))dx is equal to ………………

If b<0, then the roots x_(1) and x_(2) of the equation 2x^(2)+6x+b=0 satisfy the condition ((x_(1))/(x_(2)))+((x_(2))/(x_(1)))

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :

If x^(2)+y^(2)=a^(2)" and "k=1//a then k is equal to

Coefficient of x^(13) in the expansion of (1-x)^(5)(1+x+x^(2)+x^(3))^(4)(1+x^13)^(8) is k then k+6 is equal to

int ((2x^(e)+ 3)dx)/((x^(2) -1)(x^(2) + 4)) = k log ((x+1)/(x-1)) +k (tan^(-) ((x)/(2))) , then k equals :

int _(2)^(k)(2x+1) dx = 6 then k is equal to