Home
Class 14
MATHS
If "sin"^(2)x+"sin"x=1, then what is the...

If `"sin"^(2)x+"sin"x=1`, then what is the value of `"cos"^(12)x+3"cos"^(10)x+3"cos"^(8)x+"cos"^(6)x` ?

A

A)`-1`

B

B)0

C

C)1

D

D)8

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-2

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

41. If sin x+sin^(2)x=1, then the value of expression cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1 is equal to

If sin^(2)x+sin x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1=

If sin x+sin^(2)x=1 then write the value of cos^(8)x+2cos^(6)x+cos^(4)x

If sin x+sin^(2)x+sin^(3)x=1 then find the value of cos^(6)x-4cos^(4)x+8cos^(2)x