Home
Class 14
MATHS
(cot theta)/((1-sin theta)(sec theta + t...

`(cot theta)/((1-sin theta)(sec theta + tan theta))` is equal to :

A

cosec `theta`

B

sin `theta`

C

sec `theta`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\cot \theta}{(1 - \sin \theta)(\sec \theta + \tan \theta)}\), we will simplify it step by step. ### Step 1: Rewrite cotangent, secant, and tangent We know that: - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) - \(\sec \theta = \frac{1}{\cos \theta}\) - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) Substituting these into the expression gives us: \[ \frac{\cot \theta}{(1 - \sin \theta)(\sec \theta + \tan \theta)} = \frac{\frac{\cos \theta}{\sin \theta}}{(1 - \sin \theta)\left(\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}\right)} \] ### Step 2: Simplify the denominator The denominator can be simplified: \[ \sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta} \] Thus, we have: \[ (1 - \sin \theta)(\sec \theta + \tan \theta) = (1 - \sin \theta)\left(\frac{1 + \sin \theta}{\cos \theta}\right) \] ### Step 3: Combine the expression Now, substituting this back into our expression gives: \[ \frac{\frac{\cos \theta}{\sin \theta}}{(1 - \sin \theta)\left(\frac{1 + \sin \theta}{\cos \theta}\right)} = \frac{\cos \theta}{\sin \theta} \cdot \frac{\cos \theta}{(1 - \sin \theta)(1 + \sin \theta)} \] ### Step 4: Simplify further The expression simplifies to: \[ \frac{\cos^2 \theta}{\sin \theta (1 - \sin^2 \theta)} \] Using the identity \(1 - \sin^2 \theta = \cos^2 \theta\), we can rewrite this as: \[ \frac{\cos^2 \theta}{\sin \theta \cos^2 \theta} \] ### Step 5: Final simplification This simplifies to: \[ \frac{1}{\sin \theta} \] Which is equal to \(\csc \theta\). ### Conclusion Thus, the final answer is: \[ \csc \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

((sec theta+tan theta)(1-sin theta))/ (cosec theta(1+cos theta)(cosec theta-cot theta)) is equal to: ((sec theta+tan theta)(1-sin theta))/ (cosec theta(1+cos theta)(cosec theta-cot theta)) का मान किसके बराबर है?

((sec theta + tan theta) (1- sin theta))/(cosec theta (1 + cos theta)(cosec theta - cot theta)) is equal to: ((sec theta + tan theta) (1- sin theta))/(cosec theta (1 + cos theta)(cosec theta - cot theta)) बराबर है :

If 5 sin theta =3, then (sec theta+ tan theta)/(sec theta- tan theta) is equal to

Prove each of the following identities : (i) sec theta(1- sin theta)(sec theta + tan theta)=1 (ii) sin theta (1+ tan theta) + cos theta( 1+ cot theta)=( sec theta + "cosec" theta)

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Value of sec theta(1-sin theta)(sin theta+tan theta) is

(cot theta)/(cot theta-cot3 theta)+(tan theta)/(tan theta-tan3 theta) is equal to:

If cot theta-tan theta=sec theta then theta=

(cot theta)/(cot theta-cot3 theta)+(tan theta)/(tan theta-tan3 theta) is equal to