Home
Class 14
MATHS
If x + y = 7 and xy = 10 , then the valu...

If `x + y = 7` and `xy = 10` , then the value of `((1)/(x^(3)) + (1)/(y^(3)))` is .

A

`0.543`

B

`0.131`

C

`0.133`

D

`0.453`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{x^3} + \frac{1}{y^3} \) given that \( x + y = 7 \) and \( xy = 10 \). ### Step-by-step solution: 1. **Use the identity for the sum of cubes**: \[ \frac{1}{x^3} + \frac{1}{y^3} = \frac{y^3 + x^3}{x^3 y^3} \] We need to find \( x^3 + y^3 \) and \( x^3 y^3 \). 2. **Find \( x^3 + y^3 \)** using the identity: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] We already know \( x + y = 7 \) and \( xy = 10 \). We need to find \( x^2 + y^2 \). 3. **Calculate \( x^2 + y^2 \)**: \[ x^2 + y^2 = (x + y)^2 - 2xy = 7^2 - 2 \cdot 10 = 49 - 20 = 29 \] 4. **Substitute back to find \( x^3 + y^3 \)**: \[ x^3 + y^3 = (x + y)((x^2 + y^2) - xy) = 7(29 - 10) = 7 \cdot 19 = 133 \] 5. **Find \( x^3 y^3 \)**: \[ x^3 y^3 = (xy)^3 = 10^3 = 1000 \] 6. **Now substitute these values into the expression**: \[ \frac{1}{x^3} + \frac{1}{y^3} = \frac{x^3 + y^3}{x^3 y^3} = \frac{133}{1000} \] 7. **Final result**: \[ \frac{133}{1000} = 0.133 \] ### Conclusion: The value of \( \frac{1}{x^3} + \frac{1}{y^3} \) is \( 0.133 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y = 7 and xy = 12 , then the vaue of ((1)/(x^(3))+(1)/(y^(3))) is :

x+y=a and xy=b, then the value of (1)/(x^(3))+(1)/(y^(3))

If x + y = p and xy = q, then find the value of (1)/(x^(3)) + (1)/(y^(3)) will be

If x+y=3 and x-y=1 , then the value of xy is