Home
Class 14
MATHS
If Cosec 31^@=x, then sin^2 59+1/(cosec^...

If `Cosec 31^@=x`, then `sin^2 59+1/(cosec^2 31)+ tan^2 59-1/(sin^2 59. cosec^2 59)` is equal to:

A

`x+1`

B

`x^(2) -1`

C

`x - 1`

D

`x^(2) + 1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int sin^(2)x csc^(2)xdx

((+tan^(2)A)cotA)/("cosec"^(2)A) is equal to

If sin x + cosec x =2, then what is sin^(9) x+ cosec^(9) x equal to ?

If sintheta+cosec theta=2 , then sin^(2)theta+cosec ^(2)theta is equal to

If sin theta + cosec theta =2, then sin^n theta+"cosec"^n theta is equal to

If sintheta+cosectheta=2 , then sin^2theta(1+sin^3theta)+cosec^3theta(1+cosec^2theta) is equal to

( Sec^2 theta - cot ^2 (90 - theta))/( cosec ^2 67^@ - tan ^2 23^@) + sin ^2 40 ^@ + sin ^2 50^@ is equal to