Home
Class 14
MATHS
If cos (x-y)=(sqrt3)/2 and sin(x+y)=1/2,...

If cos `(x-y)=(sqrt3)/2` and `sin(x+y)=1/2`, then the value of `x(0ltxlt90)` is

A

`45^(@)`

B

`30^(@)`

C

`15^(@)`

D

`60^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) given that \( \cos(x - y) = \frac{\sqrt{3}}{2} \) and \( \sin(x + y) = \frac{1}{2} \). ### Step-by-step Solution: 1. **Identify the angles from trigonometric values**: - From \( \cos(x - y) = \frac{\sqrt{3}}{2} \), we know that \( x - y \) can be \( 30^\circ \) or \( 330^\circ \). However, since \( x \) and \( y \) are angles in the range of \( 0^\circ \) to \( 90^\circ \), we will take \( x - y = 30^\circ \). - From \( \sin(x + y) = \frac{1}{2} \), we know that \( x + y \) can be \( 30^\circ \) or \( 150^\circ \). Again, considering the range of \( x \) and \( y \), we will take \( x + y = 30^\circ \). 2. **Set up the equations**: - We now have two equations: \[ x - y = 30^\circ \quad \text{(1)} \] \[ x + y = 30^\circ \quad \text{(2)} \] 3. **Add the two equations**: - Adding equations (1) and (2): \[ (x - y) + (x + y) = 30^\circ + 30^\circ \] \[ 2x = 60^\circ \] 4. **Solve for \( x \)**: - Dividing both sides by 2: \[ x = 30^\circ \] 5. **Conclusion**: - Thus, the value of \( x \) is \( 30^\circ \). ### Final Answer: \[ x = 30^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin (x+y)=cos (x-y), then the value of cos^2x is :

If (sin x)/(sin y)=(1)/(2),(cos x)/(cos y)=(3)/(2), where x,y,in(0,(pi)/(2)), then the value of tan(x+y) is equal to (a)sqrt(13)(b)sqrt(14)(c)sqrt(17)(d)sqrt(15)

If (sin x)/(sin y)=(1)/(2),(cos x)/(cos y)=(3)/(2), where x,y in(0,(pi)/(2)), then the value of tan(x+y) is equal to

If sin^(-1)x+sin^(-1)y=(pi)/(2) and sin2x=cos2y then the value of x is and sin2x=cos2y

If 3cos x+2cos3x=cos y3sin x+2sin3x=sin y, then the value of cos2x is

If sin(x+y)=1andtan(x-y)=(1)/(sqrt(3)) , then the value of sinx+tany is. (0^(@)ltx,ylt90^(@))

If 2^(sin x+cos y)=1 and 16^(sin^(2)x+cos^(2)y)=4 , then find the value of sin x and cos y

If (y+3)/(2y+5)=sin^(2)x+2cos x+1, then the value of y lies in