Home
Class 14
MATHS
If (costheta+sintheta)/(costheta-sinthet...

If `(costheta+sintheta)/(costheta-sintheta)=8` then the value of cot `theta` is equal to:

A

`7/6`

B

`9/7`

C

`6/5`

D

`8/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = 8\), we can use the method of Component and Dividend (C and D). Here’s a step-by-step solution: ### Step 1: Set up the equation We start with the given equation: \[ \frac{\cos \theta + \sin \theta}{\cos \theta - \sin \theta} = 8 \] ### Step 2: Cross-multiply Cross-multiplying gives: \[ \cos \theta + \sin \theta = 8(\cos \theta - \sin \theta) \] ### Step 3: Expand the right side Expanding the right side, we have: \[ \cos \theta + \sin \theta = 8\cos \theta - 8\sin \theta \] ### Step 4: Rearrange the equation Rearranging the equation to bring all terms involving \(\cos \theta\) and \(\sin \theta\) to one side: \[ \cos \theta + \sin \theta - 8\cos \theta + 8\sin \theta = 0 \] This simplifies to: \[ -7\cos \theta + 9\sin \theta = 0 \] ### Step 5: Isolate \(\cot \theta\) Rearranging gives: \[ 7\cos \theta = 9\sin \theta \] Dividing both sides by \(\sin \theta \cos \theta\) (assuming \(\sin \theta \neq 0\)): \[ \frac{7\cos \theta}{\sin \theta} = 9 \] This can be rewritten as: \[ 7 \cot \theta = 9 \] ### Step 6: Solve for \(\cot \theta\) Now, divide both sides by 7: \[ \cot \theta = \frac{9}{7} \] ### Conclusion Thus, the value of \(\cot \theta\) is: \[ \cot \theta = \frac{9}{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2sintheta-costheta)/(costheta+sintheta)=1 , then value of cottheta is :

If (sintheta+costheta)/(sintheta-costheta)=3 then the value of sin^(4)theta is :

If A = ((costheta,-sintheta),(sintheta,costheta)) then

If sintheta +costheta =1 , then the value of sin2theta is equal to

If sintheta+costheta=1 , then the value of sin2theta is

If A=[(costheta,-sintheta),(sintheta,costheta)] find the values of theta satisfying the equation A^(T)+A =" "I _(2).

If costheta-sintheta=sqrt(2)costheta , then find the value of costheta+sintheta .

If sintheta + cos theta =1 , then the value of sintheta - costheta is:

int (cos2theta) . log((costheta+sintheta)/(costheta-sintheta))d theta is equal to