Home
Class 14
MATHS
If a + b = 11 and ab = 15, then a ^(2) +...

If `a + b = 11 and ab = 15,` then `a ^(2) + b ^(2) ` is equal to :

A

90

B

91

C

93

D

92

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^2 + b^2 \) given that \( a + b = 11 \) and \( ab = 15 \), we can use the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] ### Step-by-step solution: 1. **Identify the given values**: - \( a + b = 11 \) - \( ab = 15 \) 2. **Calculate \( (a + b)^2 \)**: \[ (a + b)^2 = 11^2 = 121 \] 3. **Calculate \( 2ab \)**: \[ 2ab = 2 \times 15 = 30 \] 4. **Substitute these values into the identity**: \[ a^2 + b^2 = (a + b)^2 - 2ab = 121 - 30 \] 5. **Perform the subtraction**: \[ a^2 + b^2 = 121 - 30 = 91 \] Thus, the value of \( a^2 + b^2 \) is \( 91 \). ### Final Answer: \[ a^2 + b^2 = 91 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a ^(2) + b ^(2) = 169, ab = 60 , then (a ^(2) - b ^(2)) is equal to :

If a+b=7 and ab = 12, then a^2+ b^2 is equal to:

If a + b = 7 and ab = 12, then a^2 + b^2 is equal to

If a^(3) - b^(3) = 210 and a-b = 5 , then ( a+ b)^(2) - ab is equal to :

If (a-b)=4 and ab = 2, then (a^(3)-b^(3)) is equal to :