Home
Class 14
MATHS
If A = [3/7 "of" "4"1/5 div 18/25 + 17/...

If A = `[3/7 "of" "4"1/5 div 18/25 + 17/24]` of `[289/16 div (3/4 + 2/3)^2 "of"8"]`,then the value of A as :

A

A) 231

B

B) 213

C

C) 321

D

D) 132

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will break down the expression for A and calculate it systematically. ### Step 1: Simplify the expression for A Given: \[ A = \left[ \frac{3}{7} \text{ of } 4 \frac{1}{5} \div \frac{18}{25} + \frac{17}{24} \text{ of } \left( \frac{289}{16} \div \left( \frac{3}{4} + \frac{2}{3} \right)^2 \text{ of } 8 \right) \right] \] ### Step 2: Convert mixed number to improper fraction Convert \( 4 \frac{1}{5} \) to an improper fraction: \[ 4 \frac{1}{5} = \frac{21}{5} \] ### Step 3: Calculate \( \frac{3}{7} \text{ of } \frac{21}{5} \) \[ \frac{3}{7} \text{ of } \frac{21}{5} = \frac{3}{7} \times \frac{21}{5} = \frac{63}{35} = \frac{9}{5} \] ### Step 4: Divide by \( \frac{18}{25} \) Now, we need to divide \( \frac{9}{5} \) by \( \frac{18}{25} \): \[ \frac{9}{5} \div \frac{18}{25} = \frac{9}{5} \times \frac{25}{18} = \frac{225}{90} = \frac{25}{10} = \frac{5}{2} \] ### Step 5: Calculate \( \frac{3}{4} + \frac{2}{3} \) To find \( \frac{3}{4} + \frac{2}{3} \), we need a common denominator: The LCM of 4 and 3 is 12. \[ \frac{3}{4} = \frac{9}{12}, \quad \frac{2}{3} = \frac{8}{12} \] So, \[ \frac{3}{4} + \frac{2}{3} = \frac{9}{12} + \frac{8}{12} = \frac{17}{12} \] ### Step 6: Square the result Now square \( \frac{17}{12} \): \[ \left( \frac{17}{12} \right)^2 = \frac{289}{144} \] ### Step 7: Divide \( \frac{289}{16} \) by \( \frac{289}{144} \) Now we divide: \[ \frac{289}{16} \div \frac{289}{144} = \frac{289}{16} \times \frac{144}{289} = \frac{144}{16} = 9 \] ### Step 8: Calculate \( \frac{17}{24} \text{ of } 9 \) Now we need to calculate: \[ \frac{17}{24} \text{ of } 9 = \frac{17}{24} \times 9 = \frac{153}{24} = \frac{51}{8} \] ### Step 9: Add the two parts together Now we add the two results: \[ A = \frac{5}{2} + \frac{51}{8} \] To add these, we need a common denominator: The LCM of 2 and 8 is 8. \[ \frac{5}{2} = \frac{20}{8} \] So, \[ A = \frac{20}{8} + \frac{51}{8} = \frac{71}{8} \] ### Final Result Thus, the value of \( A \) is: \[ A = \frac{71}{8} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2 7/8 div (3 5/6 div 2/7 of 2 1/3) xx [(2 6/7 of 4 1/5 div 2/3)xx5/9] is : / 2 7/8 div (3 5/6 div 2/7 of 2 1/3) xx [(2 6/7 of 4 1/5 div 2/3)xx5/9] का मान ज्ञात करें |

The value of [2/3 div8/12" of "2/5+2/5" of 7"1/2 div 3/4]" of "4/19 is :

(3/4+5/8) div 1/16=

The Value of (2 6/7 of 4 1/5 div 2/3)xx1 1/9 div (3/4xx2 2/3 of 1/2 div 1/4) is : (2 6/7 of 4 1/5 div 2/3)xx1 1/9 div (3/4xx2 2/3 of 1/2 div 1/4) का मान है :

The value of: 3/8 "of " 4/5 div 1 (1)/(5) + (3)/(7) " of" (7)/(12) div (1)/(40) "of" (2)/(5) - 3(2)/(3) div (11)/(30) "of" (2)/(3)

Simplify / सरलीकृत करें : 6 1/8 div (5 1/4 div 3/7 of 1/2)-8xx2/3 div 4/5 of 1 2/3

The value of (8 div 2/3 of 4/5) div (8xx2/3 div 4/5) of (8 div 2/3xx4/5) is : (8 div 2/3 of 4/5) div (8xx2/3 div 4/5) of (8 div 2/3xx4/5) का मान है :

If A=8 div 4xx(3-1)+6xx3 div 2 of 3 and B= 4 div 8xx2+7xx3 , then the value of A+B ? यदि A=8 div 4xx(3-1)+6xx3 div 2 of 3 और B= 4 div 8xx2+7xx3 है, तो A+B का मान क्या होगा ?

The value of 9/15 of (2/3 div 2/3 of 3/2) div (3/4xx3/4 div 3/4 of 4/3) of (5/4 div 5/2 xx 2/5 of 4/5) is :- 9/15 of (2/3 div 2/3 of 3/2) div (3/4xx3/4 div 3/4 of 4/3) of (5/4 div 5/2 xx 2/5 of 4/5) का मान ज्ञात करें |

The value of (5 1/4 div 3/7 of 1/2)xx(5 1/4xx 3/7 div 1/2) div (5 1/4 div 3/7 xx 1/2) is :- (5 1/4 div 3/7 of 1/2)xx(5 1/4xx 3/7 div 1/2) div (5 1/4 div 3/7 xx 1/2) का मान है :