Home
Class 14
MATHS
The value of [(sqrt3 + 2sinP)/ (1- 2Cos ...

The value of `[(sqrt3 + 2sinP)/ (1- 2Cos P)]^3 + [(1 + 2Cos P )/(sqrt3-2sinP)]^3` is:

A

`Sin PCosP`

B

1

C

`2Sin PCosP`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \left(\frac{\sqrt{3} + 2\sin P}{1 - 2\cos P}\right)^3 + \left(\frac{1 + 2\cos P}{\sqrt{3} - 2\sin P}\right)^3 \] ### Step 1: Substitute a specific value for \( P \) Let's substitute \( P = 30^\circ \) (or \( \frac{\pi}{6} \) radians) since it is a common angle that simplifies calculations. ### Step 2: Calculate \( \sin P \) and \( \cos P \) For \( P = 30^\circ \): - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) ### Step 3: Substitute the values into the expression Now, substitute these values into the expression: 1. For the first term: \[ \frac{\sqrt{3} + 2\sin 30^\circ}{1 - 2\cos 30^\circ} = \frac{\sqrt{3} + 2 \cdot \frac{1}{2}}{1 - 2 \cdot \frac{\sqrt{3}}{2}} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \] 2. For the second term: \[ \frac{1 + 2\cos 30^\circ}{\sqrt{3} - 2\sin 30^\circ} = \frac{1 + 2 \cdot \frac{\sqrt{3}}{2}}{\sqrt{3} - 2 \cdot \frac{1}{2}} = \frac{1 + \sqrt{3}}{\sqrt{3} - 1} \] ### Step 4: Rewrite the expression Now we can rewrite the entire expression using the results from above: \[ \left(\frac{\sqrt{3} + 1}{1 - \sqrt{3}}\right)^3 + \left(\frac{1 + \sqrt{3}}{\sqrt{3} - 1}\right)^3 \] ### Step 5: Recognize a pattern Notice that: \[ \frac{\sqrt{3} + 1}{1 - \sqrt{3}} = -\frac{1 + \sqrt{3}}{\sqrt{3} - 1} \] This means that the two fractions are negatives of each other. ### Step 6: Apply the identity for cubes Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \): Let \( a = \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \) and \( b = \frac{1 + \sqrt{3}}{\sqrt{3} - 1} \). Since \( a + b = 0 \), we have: \[ a^3 + b^3 = 0 \] ### Conclusion Thus, the value of the original expression is: \[ \left(\frac{\sqrt{3} + 2\sin P}{1 - 2\cos P}\right)^3 + \left(\frac{1 + 2\cos P}{\sqrt{3} - 2\sin P}\right)^3 = 0 \] So the answer is: **0**
Promotional Banner

Similar Questions

Explore conceptually related problems

((sqrt(3)+2sin A)^(3))/((1-2cos A)^(3))+((1+2cos A)^(3))/((sqrt(3)-2sin A)^(3))

((sqrt(3)+2sin A)^(3))/((1-2cos A)^(3))+((1+2cos A)^(3))/((sqrt(3)-2sin A)^(3))=

The value of tan[1/2cos^(-1).sqrt5/3] is

((sqrt(3)+2cos A)/(1-2sin A))^(-3)+((1+2sin A)/(sqrt(3)-2cos A))^(-3)=

((sqrt(3)+2cos A)/(1-2sin A))^(-3)+((1+2sin A)/(sqrt(3)-2cos A))^(-3)=

cos^(-1)[(sqrt(3))/(2)]

The value of cos[cos^(-1)(-(sqrt(3))/(2))+(pi)/(6))]

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

The value of 2cos^(-1)sqrt((2)/(3))-2cos^(-1).(sqrt6+1)/(2sqrt3) is equal to

The value of (2 + sqrt(3))/(2- sqrt(3)) + (2- sqrt(3))/(2 + sqrt(3)) + ( sqrt(3) + 1)/(sqrt(3) -1) is