Home
Class 14
MATHS
If (1+ sintheta-costheta)/(1+ sintheta +...

If `(1+ sintheta-costheta)/(1+ sintheta + costheta)+(1+sintheta+costheta)/(1+sintheta-costheta)= 4`, then which of the following values will be suitable for `theta` ?

A

A) `45^@`

B

B) `30^@`

C

C) `90^@`

D

D) `60^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta} + \frac{1 + \sin \theta + \cos \theta}{1 + \sin \theta - \cos \theta} = 4, \] we will simplify the left-hand side step by step. ### Step 1: Simplify the expression Let \( A = 1 + \sin \theta \) and \( B = \cos \theta \). The equation can be rewritten as: \[ \frac{A - B}{A + B} + \frac{A + B}{A - B} = 4. \] ### Step 2: Find a common denominator The common denominator for the two fractions is \( (A + B)(A - B) \). Thus, we can write: \[ \frac{(A - B)^2 + (A + B)^2}{(A + B)(A - B)} = 4. \] ### Step 3: Expand the numerator Now, we expand the numerator: \[ (A - B)^2 + (A + B)^2 = (A^2 - 2AB + B^2) + (A^2 + 2AB + B^2) = 2A^2 + 2B^2. \] ### Step 4: Substitute back Substituting back, we have: \[ \frac{2(A^2 + B^2)}{(A + B)(A - B)} = 4. \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 2(A^2 + B^2) = 4(A + B)(A - B). \] ### Step 6: Simplify further This simplifies to: \[ A^2 + B^2 = 2(A + B)(A - B). \] ### Step 7: Substitute \( A \) and \( B \) Now substituting back \( A = 1 + \sin \theta \) and \( B = \cos \theta \): \[ (1 + \sin \theta)^2 + \cos^2 \theta = 2((1 + \sin \theta) + \cos \theta)((1 + \sin \theta) - \cos \theta). \] ### Step 8: Use trigonometric identities Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ (1 + \sin \theta)^2 + (1 - \sin^2 \theta) = 2((1 + \sin \theta) + \cos \theta)((1 + \sin \theta) - \cos \theta). \] ### Step 9: Solve for specific values of \( \theta \) Now we can test specific values of \( \theta \) to see if they satisfy the original equation. 1. **Testing \( \theta = 90^\circ \)**: - \( \sin 90^\circ = 1 \) and \( \cos 90^\circ = 0 \). - Substitute: \[ \frac{1 + 1 - 0}{1 + 1 + 0} + \frac{1 + 1 + 0}{1 + 1 - 0} = \frac{2}{2} + \frac{2}{2} = 1 + 1 = 2 \quad (\text{not } 4) \] 2. **Testing \( \theta = 30^\circ \)**: - \( \sin 30^\circ = \frac{1}{2} \) and \( \cos 30^\circ = \frac{\sqrt{3}}{2} \). - Substitute: \[ \frac{1 + \frac{1}{2} - \frac{\sqrt{3}}{2}}{1 + \frac{1}{2} + \frac{\sqrt{3}}{2}} + \frac{1 + \frac{1}{2} + \frac{\sqrt{3}}{2}}{1 + \frac{1}{2} - \frac{\sqrt{3}}{2}}. \] After simplifying, you will find that this does indeed equal 4. ### Conclusion The suitable value for \( \theta \) is \( 30^\circ \).
Promotional Banner

Similar Questions

Explore conceptually related problems

(sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta) =_____________.

Evaluate : ( sintheta + costheta ) ( sintheta - costheta )

If sintheta+costheta=x then sintheta-costheta=?

If sintheta-costheta=1 ,then find sintheta.costheta

If sintheta+costheta=(7)/(5) , find sintheta.costheta .

If sintheta + 2 costheta=1 ,then prove that 2sintheta-costheta=2 .

If sintheta+costheta=(17)/(13) , then sintheta.costheta .

If sintheta+costheta=1 , then Find sintheta.costheta