Home
Class 14
MATHS
If "sin"x=2/(3), then find the value of ...

If `"sin"x=2/(3)`, then find the value of Cos 3x.

A

`-0.5797`

B

0.5678

C

0.6735

D

`-0.8765`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 3x \) given that \( \sin x = \frac{2}{3} \), we can follow these steps: ### Step 1: Find \( \cos x \) We know the Pythagorean identity: \[ \sin^2 x + \cos^2 x = 1 \] Substituting \( \sin x = \frac{2}{3} \): \[ \left(\frac{2}{3}\right)^2 + \cos^2 x = 1 \] Calculating \( \left(\frac{2}{3}\right)^2 \): \[ \frac{4}{9} + \cos^2 x = 1 \] Now, isolate \( \cos^2 x \): \[ \cos^2 x = 1 - \frac{4}{9} = \frac{9}{9} - \frac{4}{9} = \frac{5}{9} \] Taking the square root gives: \[ \cos x = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Step 2: Use the formula for \( \cos 3x \) The formula for \( \cos 3x \) is: \[ \cos 3x = 4 \cos^3 x - 3 \cos x \] Substituting \( \cos x = \frac{\sqrt{5}}{3} \): \[ \cos 3x = 4 \left(\frac{\sqrt{5}}{3}\right)^3 - 3 \left(\frac{\sqrt{5}}{3}\right) \] ### Step 3: Calculate \( \cos^3 x \) Calculating \( \left(\frac{\sqrt{5}}{3}\right)^3 \): \[ \left(\frac{\sqrt{5}}{3}\right)^3 = \frac{(\sqrt{5})^3}{3^3} = \frac{5\sqrt{5}}{27} \] Now substitute back into the equation for \( \cos 3x \): \[ \cos 3x = 4 \cdot \frac{5\sqrt{5}}{27} - 3 \cdot \frac{\sqrt{5}}{3} \] This simplifies to: \[ \cos 3x = \frac{20\sqrt{5}}{27} - \frac{9\sqrt{5}}{27} \] Combining the terms: \[ \cos 3x = \frac{20\sqrt{5} - 9\sqrt{5}}{27} = \frac{11\sqrt{5}}{27} \] ### Final Result Thus, the value of \( \cos 3x \) is: \[ \cos 3x = \frac{11\sqrt{5}}{27} \]
Promotional Banner