Home
Class 14
MATHS
If "tan"theta+"cot"theta=6, then find th...

If `"tan"theta+"cot"theta=6`, then find the value of `"tan"^(2)theta+"cot"^(2)theta`.

A

36

B

24

C

26

D

34

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we need to find the value of \( \tan^2 \theta + \cot^2 \theta \) given that \( \tan \theta + \cot \theta = 6 \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ \tan \theta + \cot \theta = 6 \] Now, we square both sides: \[ (\tan \theta + \cot \theta)^2 = 6^2 \] This gives us: \[ \tan^2 \theta + 2 \tan \theta \cot \theta + \cot^2 \theta = 36 \] ### Step 2: Use the identity for \( \tan \theta \cot \theta \) Recall that: \[ \tan \theta \cot \theta = 1 \] Thus, we can substitute \( \tan \theta \cot \theta \) in our equation: \[ \tan^2 \theta + 2(1) + \cot^2 \theta = 36 \] This simplifies to: \[ \tan^2 \theta + \cot^2 \theta + 2 = 36 \] ### Step 3: Isolate \( \tan^2 \theta + \cot^2 \theta \) Now, we can isolate \( \tan^2 \theta + \cot^2 \theta \): \[ \tan^2 \theta + \cot^2 \theta = 36 - 2 \] This results in: \[ \tan^2 \theta + \cot^2 \theta = 34 \] ### Final Answer Thus, the value of \( \tan^2 \theta + \cot^2 \theta \) is: \[ \boxed{34} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(2)theta+cot^(2)theta is

If tan theta+cot theta=4 , then find the value of tan^(4)theta+cot^(4)theta .

Find the value of (1+tan^(2)theta)/(1+cot^(2)theta)

If tan theta+cot theta=2, find the value of tan^(2)theta+cot^(2)theta

If 3cot theta=2, then find the value of tan theta .

If tan theta + cot theta = x, then what is the value of tan^(4) theta + cot^(4) theta ?

If tan theta - cot theta =7 , then the value of tan^(3)theta-cot^(3)theta is

If tan^(2)theta+cot^(2)theta=52, then the value of tan^(2)theta+cot^(2)theta is equal to

If theta is an acute angle and tan theta + cot theta=2 , then the value of tan^(5)theta + cot^(10) theta is:

If tan^(3)theta+cot^(3)theta=52 , then the value of tan^(2)theta+cot^(2)theta is equal to :