Home
Class 14
MATHS
If cos x = (3)/(5) , then find the valu...

If `cos x = (3)/(5)` , then find the value of `sin x - sin^(3) x `.

A

`0.476`

B

`0.288`

C

`0.358`

D

`0.389`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos x = \frac{3}{5} \) and we need to find \( \sin x - \sin^3 x \), we can follow these steps: ### Step 1: Understand the relationship between sine and cosine We know that: \[ \sin^2 x + \cos^2 x = 1 \] Given \( \cos x = \frac{3}{5} \), we can find \( \sin^2 x \). ### Step 2: Calculate \( \sin^2 x \) Substituting the value of \( \cos x \) into the Pythagorean identity: \[ \sin^2 x + \left(\frac{3}{5}\right)^2 = 1 \] \[ \sin^2 x + \frac{9}{25} = 1 \] \[ \sin^2 x = 1 - \frac{9}{25} \] \[ \sin^2 x = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] ### Step 3: Find \( \sin x \) Taking the square root of both sides, we get: \[ \sin x = \sqrt{\frac{16}{25}} = \frac{4}{5} \] (Note: We take the positive root since sine is positive in the first quadrant where cosine is positive.) ### Step 4: Calculate \( \sin^3 x \) Now we calculate \( \sin^3 x \): \[ \sin^3 x = \left(\frac{4}{5}\right)^3 = \frac{64}{125} \] ### Step 5: Substitute into the expression \( \sin x - \sin^3 x \) Now we substitute \( \sin x \) and \( \sin^3 x \) into the expression: \[ \sin x - \sin^3 x = \frac{4}{5} - \frac{64}{125} \] ### Step 6: Find a common denominator The common denominator between 5 and 125 is 125. We convert \( \frac{4}{5} \): \[ \frac{4}{5} = \frac{4 \times 25}{5 \times 25} = \frac{100}{125} \] ### Step 7: Perform the subtraction Now we can perform the subtraction: \[ \sin x - \sin^3 x = \frac{100}{125} - \frac{64}{125} = \frac{100 - 64}{125} = \frac{36}{125} \] ### Final Answer Thus, the value of \( \sin x - \sin^3 x \) is: \[ \frac{36}{125} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

If "sin"x=2/(3) , then find the value of Cos 3x.

3sin x+5cos x=5 then find the value of 5sin x-3cos x

If 3sin x+5cos x=5 then write the value of 5sin x-3cos x

If 3 sin x + 5 cos x =5 , then what is the value of (3cos x - 5sin x) ?

If x = 7.5^(@) then find the value of (cos x - cos 3x)/(sin 3x - sin x)

The value of (sin x-cos x)/(sin^(3)x) is equal to :

If tanx = 3/2 , then the value of (3 sin x + 2 cos x)/(3 sin x - 2cos x) is:

If sin^(3)x cos3x+cos^(3)x sin3x=(3)/(8), then the value of 8sin4x is _(-)