Home
Class 14
MATHS
If (sin x + cos x)/(sin x - cos x) = (6...

If `(sin x + cos x)/(sin x - cos x) = (6)/(5)` , then the value of `(tan^(2) x + 1)/(tan^(2) x-1) ` is :

A

`(35)/(61)`

B

`(61)/(60)`

C

`(60)/(61)`

D

`(61)/(35)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sin x + \cos x}{\sin x - \cos x} = \frac{6}{5}, \] we will follow these steps: ### Step 1: Cross-Multiply Cross-multiply the equation to eliminate the fraction: \[ 5(\sin x + \cos x) = 6(\sin x - \cos x). \] ### Step 2: Expand Both Sides Expanding both sides gives: \[ 5\sin x + 5\cos x = 6\sin x - 6\cos x. \] ### Step 3: Rearrange the Equation Rearranging the equation to group similar terms: \[ 5\sin x - 6\sin x + 5\cos x + 6\cos x = 0, \] which simplifies to: \[ - \sin x + 11\cos x = 0. \] ### Step 4: Solve for \(\tan x\) From the equation \(-\sin x + 11\cos x = 0\), we can express \(\tan x\): \[ \sin x = 11\cos x \implies \frac{\sin x}{\cos x} = 11 \implies \tan x = 11. \] ### Step 5: Calculate \(\tan^2 x + 1\) and \(\tan^2 x - 1\) Now, we need to find the value of \[ \frac{\tan^2 x + 1}{\tan^2 x - 1}. \] First, calculate \(\tan^2 x\): \[ \tan^2 x = 11^2 = 121. \] Now, substitute this into the expression: \[ \frac{121 + 1}{121 - 1} = \frac{122}{120}. \] ### Step 6: Simplify the Fraction Now simplify \(\frac{122}{120}\): \[ \frac{122}{120} = \frac{61}{60}. \] ### Final Answer Thus, the value of \[ \frac{\tan^2 x + 1}{\tan^2 x - 1} = \frac{61}{60}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if sin x+cos x=(1)/(5), then find the value of tan2x.

If sin x+cos x=(1)/(5), then tan 2x is

(1-cos 2x + sin x)/(sin 2x + cos x) = tan x

If (sin^(2)x-2cos^(2)x+1)/(sin^(2)x+2cos^(2)x-1)=4 , then the value of 2 tan^(2)x is

tan y = (sin x + 1-cos x) / (sin x-1 + cos x)

(1 + sin x-cos x) / (1 + sin x + cos x) = tan ((x) / (2))

Find the value of tan^(-1) ((cos x - sin x)/(cos x + sin x))