Home
Class 14
MATHS
If sin x = (3)/(5), 0 le x le 90^(@),...

If `sin x = (3)/(5), 0 le x le 90^(@)`, then the value of `cot x.sec x ` is :

A

`(5)/(3)`

B

`(3)/(5)`

C

`(4)/(5)`

D

`(3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot x \cdot \sec x \) given that \( \sin x = \frac{3}{5} \) and \( 0 \leq x \leq 90^\circ \). ### Step-by-step Solution: 1. **Find \( \cos x \)**: We know that \( \sin^2 x + \cos^2 x = 1 \). Given \( \sin x = \frac{3}{5} \), we can find \( \cos x \) as follows: \[ \cos^2 x = 1 - \sin^2 x = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] Taking the square root, we get: \[ \cos x = \sqrt{\frac{16}{25}} = \frac{4}{5} \] 2. **Find \( \cot x \)**: The cotangent function is defined as: \[ \cot x = \frac{\cos x}{\sin x} \] Substituting the values we found: \[ \cot x = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3} \] 3. **Find \( \sec x \)**: The secant function is the reciprocal of the cosine function: \[ \sec x = \frac{1}{\cos x} = \frac{1}{\frac{4}{5}} = \frac{5}{4} \] 4. **Calculate \( \cot x \cdot \sec x \)**: Now we can find the product: \[ \cot x \cdot \sec x = \left(\frac{4}{3}\right) \cdot \left(\frac{5}{4}\right) \] Simplifying this gives: \[ \cot x \cdot \sec x = \frac{4 \cdot 5}{3 \cdot 4} = \frac{5}{3} \] ### Final Answer: The value of \( \cot x \cdot \sec x \) is \( \frac{5}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos x = 24/25,0le xle90^@ , then the value of cot x + cosec x is: यदि cos x = 24/25,0le xle90^@ , cot x +cosec x का मान है :

If (sinx)/(1+cosx)+(sinx)/(1-cosx)=4 and 0^@ le x le 90^@ , then the value of x is

If tanx = m/n and 0^@lex le 90^@ , then the value of (sin x + cos x) is: यदि tanx = m/n और 0^@lex le 90^@ , (sin x + cos x) का मान है:

sin^(-1)(xsqrt(x)),0 le x le 1

If |tan x|=tan x+sec x,(0 le x le 2 pi) .Then the value(s) of x is/are

If sin x+ cos x =1/5 and 0 le x le pi, then tan x is equal to

If 0 le a le x , then the minimum value of "log"_(a) x + "log"_(x) is

2sec^2x-tan^2x=5and 0^@ le xle 90^@ then x=?

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is