Home
Class 14
MATHS
If cosecθ=secθ, then value of θ is...

If cosecθ=secθ, then value of θ is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc \theta = \sec \theta \), we can follow these steps: ### Step 1: Write the definitions of cosecant and secant The cosecant and secant functions are defined as: \[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \sec \theta = \frac{1}{\cos \theta} \] ### Step 2: Set up the equation From the given equation \( \csc \theta = \sec \theta \), we can substitute the definitions: \[ \frac{1}{\sin \theta} = \frac{1}{\cos \theta} \] ### Step 3: Cross-multiply to eliminate the fractions Cross-multiplying gives us: \[ \cos \theta = \sin \theta \] ### Step 4: Solve the equation The equation \( \cos \theta = \sin \theta \) implies that: \[ \tan \theta = 1 \] This occurs when \( \theta = 45^\circ + n \cdot 180^\circ \) where \( n \) is any integer. ### Step 5: Determine the principal value The principal value of \( \theta \) that satisfies this equation in the range of \( 0^\circ \) to \( 360^\circ \) is: \[ \theta = 45^\circ \] ### Final Answer Thus, the value of \( \theta \) is: \[ \theta = 45^\circ \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If cotθ = sqrt6 , then the value of is: (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) यदि cotθ = sqrt6 है तो (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) का मान हैः

If {(2 sin θ – cos θ) / (cos θ + sin θ)} = 1, then the value of cot θ is (A) 1/2 (B) 1/3 (C ) 3 (D) 2

If θ is an acute angle and sinθ=cosθ, find the value of 2tan^2θ+sin^2θ−1.

If sqrt((1-cosθ)/(1+cosθ)) xx sqrt((cosecθ -cot θ)/(cosecθ +cot θ))= (1-r)/(1+r) , then the value of r is: यदि sqrt((1-cosθ)/(1+cosθ)) xx sqrt((cosecθ -cot θ)/(cosecθ +cot θ))= (1-r)/(1+r) है तो r का मानहैः

If 2cos^(2) θ - 5cosθ +2 =0 , 0^circ lt θ lt 90^circ , then the value of (cosecθ + cotθ) is:

If (sinθ/(1+ cosθ)) + ((1 +cosθ)/sinθ) = 4/sqrt3 0^circ lt θ lt 90^circ , then the value of (tanθ + secθ)^(-1) is : यदि (sinθ/(1+ cosθ)) + ((1 +cosθ)/sinθ) = 4/sqrt3 0^circ lt θ lt 90^circ ,, तो (tanθ + secθ)^(-1) का मान है :

If 5sin θ – 4cos θ = 0, 0^circ lt θ lt 90^circ , then the value of (5sinθ− 2cosθ)/ (5 sin θ + 3cosθ) is: यदि 5sin θ – 4cos θ = 0, 0^circ lt θ lt 90^circ है, तो (5sinθ− 2cosθ)/ (5 sin θ + 3cosθ) का मान है:

If cot θ = 21/20 then what then value of sec θ ?

If θ lies in the first quadrant and cos^(2) θ – sin^(2) θ = 1/2 , then the value of tan^(2)2θ + sin^(2)3θ is: यदि θ प्रथम चतुथथांश में है और cos^(2) θ – sin^(2) θ = 1/2 , तो tan^(2)2θ + sin^(2)3θ का मान है:

If cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , then what is the value of 4cosecθ + cotθ ? यदि cos^(2) θ - sin^(2) θ - 3cosθ +2 =0 , 0^circ lt θ lt 90^circ , है तो 4cosecθ + cotθ का मान कितना है?