Home
Class 14
MATHS
If p + (1)/(p) = 112, find (p - 112)^(15...

If `p + (1)/(p) = 112`, find `(p - 112)^(15) + (1)/(p^(15))`.

A

1

B

15

C

10

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( p + \frac{1}{p} = 112 \) and find \( (p - 112)^{15} + \frac{1}{p^{15}} \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ p + \frac{1}{p} = 112 \] We can denote \( p - 112 \) as \( x \), so we have: \[ p = x + 112 \] ### Step 2: Substitute \( p \) in the Original Equation Substituting \( p \) in the original equation gives us: \[ (x + 112) + \frac{1}{x + 112} = 112 \] This simplifies to: \[ x + 112 + \frac{1}{x + 112} = 112 \] Subtracting 112 from both sides: \[ x + \frac{1}{x + 112} = 0 \] ### Step 3: Isolate \( x \) From the equation \( x + \frac{1}{x + 112} = 0 \), we can isolate \( x \): \[ x = -\frac{1}{x + 112} \] Multiplying both sides by \( x + 112 \) (assuming \( x + 112 \neq 0 \)): \[ x(x + 112) = -1 \] This expands to: \[ x^2 + 112x + 1 = 0 \] ### Step 4: Solve the Quadratic Equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 112, c = 1 \): \[ x = \frac{-112 \pm \sqrt{112^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] Calculating the discriminant: \[ 112^2 - 4 = 12544 - 4 = 12540 \] So, \[ x = \frac{-112 \pm \sqrt{12540}}{2} \] ### Step 5: Find \( p - 112 \) Since we are interested in \( (p - 112)^{15} + \frac{1}{p^{15}} \), we note that: \[ p - 112 = x \] Thus, we need to find \( x^{15} + \frac{1}{p^{15}} \). ### Step 6: Calculate \( \frac{1}{p^{15}} \) Using the identity \( p + \frac{1}{p} = 112 \), we can derive: \[ p^{15} + \frac{1}{p^{15}} = (p + \frac{1}{p})^{15} - \text{(lower order terms)} \] However, we can also use the earlier derived \( x + \frac{1}{x + 112} = 0 \) to see that: \[ x^{15} + \frac{1}{p^{15}} = 0 \] ### Final Step: Conclusion Thus, we conclude: \[ (p - 112)^{15} + \frac{1}{p^{15}} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+ (1)/(x)= -2 , find x^(112) + (1)/(x^(112))= ?

If x+ (1)/(x)=2 , find x^(112)- (1)/(x^(112))= ?

If p + 1/ ( p + 2 ) = 3 , find the value ( p + 2 )^3 + 1/( p + 2 )^3

If p + 1/( p + 2 ) = 3 , find the value of ( p + 2 )^3 + 1/( p + 2 )^3

If p-1/(p)=4 , find the value of p^(4)+1/(p^(4)) .

If p + (1)/(p)=sqrt(10) , then find the value of p^(4) + (1)/(p^(4)) .

P^(2)+(1)/(p^(2))=7 then find the value of P^(3)+(1)/(P^(3))=?

If p^(3)-(1)/(p^(3))=140 then find the value of p-(1)/(p)