Home
Class 14
MATHS
If a + b = 9 and ab = 10, find the value...

If a + b = 9 and ab = 10, find the value of a^2+b^2.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^2 + b^2 \) given that \( a + b = 9 \) and \( ab = 10 \), we can follow these steps: ### Step 1: Use the identity for \( a^2 + b^2 \) We know that: \[ a^2 + b^2 = (a + b)^2 - 2ab \] This identity allows us to express \( a^2 + b^2 \) in terms of \( a + b \) and \( ab \). ### Step 2: Substitute the known values From the problem, we have: - \( a + b = 9 \) - \( ab = 10 \) Now we can substitute these values into the identity: \[ a^2 + b^2 = (9)^2 - 2(10) \] ### Step 3: Calculate \( (a + b)^2 \) Calculating \( (9)^2 \): \[ (9)^2 = 81 \] ### Step 4: Calculate \( 2ab \) Calculating \( 2(10) \): \[ 2(10) = 20 \] ### Step 5: Substitute back into the equation Now substitute these results back into the equation: \[ a^2 + b^2 = 81 - 20 \] ### Step 6: Simplify the expression Now, simplify the right side: \[ a^2 + b^2 = 61 \] ### Final Answer Thus, the value of \( a^2 + b^2 \) is \( 61 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=7 and ab=12, find the value of a^(2)+b^(2)

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))

If 2a + 3b = 8 and ab = 5, then find the value of 4a^2+9b^2 . यदि 2a + 3b = 8 और ab = 5, तो 4a^2+9b^2 का मान ज्ञात कीजिए ।

If a+b=10 and ab=21, find the value of a^(3)+b^(3)

If a+b=10 and ab=21, find the value of a^(3)+b^(3)

If a+b=10 and ab=21, find the value of a^(3)+b^(3)

If a-b=5 and ab=12, find the value of a^(3)+b^(2)

If a+b=10 and ab-=16, find the value of a^(2)-ab+b^(2) and a^(2)+ab+b^(2)