Home
Class 14
MATHS
If the value of sec B + tan B = r, then...

If the value of `sec B + tan B = r`, then the value of sec B - tan B is equal to :

A

`0`

B

`- r`

C

`(1)/( r)`

D

`r^2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If (tan)(A)/(2)=r, then the value of (sec A+tan A) is equal to

If tan(A+B)=p&tan(A-B)=q , then the value of tan 2A is

If A+B=C, then write the value of tan A tan B tan C.

If tan(A+B)=pand tan(A-B)=q, then the value of tan2A, is

If a^(2)sec^(2)x+b^(2)tan^(2)x=c^(2) then the value of sec^(2)x+tan^(2)x is equal to (assume b^(2)!=a^(2) )

If A and B are complementary angles, then the value of sin A cos B + cos A sin B - tanA tan B + sec^(2) A - cot^2 B is

If sin A = (3)/(5) and cos B = (12)/(13) . Then the value of (tan A - tan B)/(1 + tan A tan B) is equal to

If A+B=(pi)/(3) where A,B>0, then minimum value of sec A+sec B is equal to

If a^(2)sec^(2)x-b^(2)tan^(2)x=c^(2) then the value of (sec^(2)x+tan^(2)x) is equal to (assume b^(2)nea^(2))