Home
Class 14
MATHS
If a+b=7 and ab=10, then find a−b....

If a+b=7 and ab=10, then find a−b.

A

7

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a - b \) given the equations \( a + b = 7 \) and \( ab = 10 \). ### Step-by-step Solution: 1. **Write down the given equations:** \[ a + b = 7 \quad \text{(1)} \] \[ ab = 10 \quad \text{(2)} \] 2. **Square the first equation:** \[ (a + b)^2 = 7^2 \] Expanding the left side: \[ a^2 + 2ab + b^2 = 49 \quad \text{(3)} \] 3. **Substitute the value of \( ab \) from equation (2) into equation (3):** \[ a^2 + 2(10) + b^2 = 49 \] Simplifying: \[ a^2 + 20 + b^2 = 49 \] 4. **Rearrange to find \( a^2 + b^2 \):** \[ a^2 + b^2 = 49 - 20 \] \[ a^2 + b^2 = 29 \quad \text{(4)} \] 5. **Use the identity for \( a - b \):** \[ a - b = \sqrt{(a + b)^2 - 4ab} \] Substitute the values from equations (1) and (2): \[ a - b = \sqrt{(7)^2 - 4(10)} \] \[ a - b = \sqrt{49 - 40} \] \[ a - b = \sqrt{9} \] 6. **Find the final value of \( a - b \):** \[ a - b = \pm 3 \] ### Final Answer: Thus, the value of \( a - b \) is \( \pm 3 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b=10 and ab=16 then find the value of a^2+2b^2 and a^2+ab+b^2

If a:b=2:3 and b:c=5:7 then find a:c and a:b:c

If a = 2 and b = 8 , then find the value of 10 - 6ab

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))

If a+b=7 and ab=12, find the value of a^(2)+b^(2)

If a + b = 9 and ab = 10, find the value of a^2+b^2.

If (a - b) = 7 and ab = 9, then (a^(2) + b^(2)) = ?

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .