Home
Class 14
MATHS
If (sintheta+costheta)/(sintheta-costhet...

If `(sintheta+costheta)/(sintheta-costheta)=3` and `theta` is an acute angle, then the value of `(3sintheta+4costheta)/(8costheta-3sintheta)` is

A

A)10

B

B)`(1)/(2)`

C

C)5

D

D)2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \frac{\sin \theta + \cos \theta}{\sin \theta - \cos \theta} = 3 \] ### Step 1: Cross-multiply the equation Cross-multiplying gives us: \[ \sin \theta + \cos \theta = 3(\sin \theta - \cos \theta) \] ### Step 2: Expand the right side Expanding the right side, we have: \[ \sin \theta + \cos \theta = 3\sin \theta - 3\cos \theta \] ### Step 3: Rearrange the equation Rearranging the equation to group similar terms yields: \[ \sin \theta + 3\cos \theta = 3\sin \theta \] ### Step 4: Move all terms involving \(\sin \theta\) to one side This gives us: \[ 3\cos \theta = 3\sin \theta - \sin \theta \] ### Step 5: Simplify the equation This simplifies to: \[ 3\cos \theta = 2\sin \theta \] ### Step 6: Divide both sides by \(\cos \theta\) Dividing both sides by \(\cos \theta\) (noting that \(\cos \theta \neq 0\) since \(\theta\) is acute): \[ 3 = 2\tan \theta \] ### Step 7: Solve for \(\tan \theta\) Thus, we find: \[ \tan \theta = \frac{3}{2} \] ### Step 8: Substitute \(\tan \theta\) into the expression Now we need to evaluate: \[ \frac{3\sin \theta + 4\cos \theta}{8\cos \theta - 3\sin \theta} \] ### Step 9: Express \(\sin \theta\) and \(\cos \theta\) in terms of \(\tan \theta\) Let \(\sin \theta = 3k\) and \(\cos \theta = 2k\) for some \(k\). Then: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3k}{2k} = \frac{3}{2} \] ### Step 10: Find \(k\) Using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ (3k)^2 + (2k)^2 = 1 \implies 9k^2 + 4k^2 = 1 \implies 13k^2 = 1 \implies k^2 = \frac{1}{13} \implies k = \frac{1}{\sqrt{13}} \] ### Step 11: Calculate \(\sin \theta\) and \(\cos \theta\) Thus: \[ \sin \theta = 3k = \frac{3}{\sqrt{13}}, \quad \cos \theta = 2k = \frac{2}{\sqrt{13}} \] ### Step 12: Substitute \(\sin \theta\) and \(\cos \theta\) into the expression Substituting these values into the expression: \[ 3\sin \theta + 4\cos \theta = 3\left(\frac{3}{\sqrt{13}}\right) + 4\left(\frac{2}{\sqrt{13}}\right) = \frac{9}{\sqrt{13}} + \frac{8}{\sqrt{13}} = \frac{17}{\sqrt{13}} \] And for the denominator: \[ 8\cos \theta - 3\sin \theta = 8\left(\frac{2}{\sqrt{13}}\right) - 3\left(\frac{3}{\sqrt{13}}\right) = \frac{16}{\sqrt{13}} - \frac{9}{\sqrt{13}} = \frac{7}{\sqrt{13}} \] ### Step 13: Final calculation Now, substituting these into the expression gives: \[ \frac{3\sin \theta + 4\cos \theta}{8\cos \theta - 3\sin \theta} = \frac{\frac{17}{\sqrt{13}}}{\frac{7}{\sqrt{13}}} = \frac{17}{7} \] ### Step 14: Simplify This simplifies to: \[ \frac{17}{7} = 5 \] Thus, the final answer is: \[ \boxed{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta+costheta=x then sintheta-costheta=?

The value of (sintheta)/(1+costheta)+(sintheta)/(1-costheta) is :

If tantheta=4/3 then find the value of (sintheta+costheta)/(sintheta-costheta)

If (sintheta+costheta)/(sintheta-costheta)=3 then the value of sin^(4)theta is :

Evaluate : ( sintheta + costheta ) ( sintheta - costheta )

If sintheta+costheta=(7)/(5) , find sintheta.costheta .

Maximum value of (3sintheta+4costheta) is: