Home
Class 14
MATHS
If x=5-2√6, then the value of x^(2)+(1)/...

If x=5-2√6, then the value of `x^(2)+(1)/(x^(2))`is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x = 5 - 2\sqrt{6} \) and we need to find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Calculate \( x^2 \) First, we need to square \( x \): \[ x^2 = (5 - 2\sqrt{6})^2 \] Using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \): \[ x^2 = 5^2 - 2 \cdot 5 \cdot 2\sqrt{6} + (2\sqrt{6})^2 \] Calculating each term: \[ = 25 - 20\sqrt{6} + 4 \cdot 6 \] \[ = 25 - 20\sqrt{6} + 24 \] \[ = 49 - 20\sqrt{6} \] ### Step 2: Calculate \( \frac{1}{x} \) Next, we find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{5 - 2\sqrt{6}} \] To rationalize the denominator, multiply the numerator and the denominator by the conjugate: \[ \frac{1}{x} = \frac{5 + 2\sqrt{6}}{(5 - 2\sqrt{6})(5 + 2\sqrt{6})} \] Calculating the denominator: \[ (5 - 2\sqrt{6})(5 + 2\sqrt{6}) = 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] Thus, we have: \[ \frac{1}{x} = 5 + 2\sqrt{6} \] ### Step 3: Calculate \( \frac{1}{x^2} \) Now we square \( \frac{1}{x} \): \[ \frac{1}{x^2} = (5 + 2\sqrt{6})^2 \] Using the formula \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ = 5^2 + 2 \cdot 5 \cdot 2\sqrt{6} + (2\sqrt{6})^2 \] Calculating each term: \[ = 25 + 20\sqrt{6} + 24 \] \[ = 49 + 20\sqrt{6} \] ### Step 4: Calculate \( x^2 + \frac{1}{x^2} \) Now we can find \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = (49 - 20\sqrt{6}) + (49 + 20\sqrt{6}) \] The \( -20\sqrt{6} \) and \( +20\sqrt{6} \) cancel out: \[ = 49 + 49 = 98 \] ### Final Answer Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{98} \]
Promotional Banner