Home
Class 14
MATHS
The value of ((1)/(5)-:(1)/(5)xx(1)/(5))...

The value of `((1)/(5)-:(1)/(5)xx(1)/(5))/((1)/(5)-:(1)/(5)"of"(1)/(5))-4(1)/(5)-:105` is

A

A)0

B

B)2

C

C)10

D

D)5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\frac{1}{5} \div \frac{1}{5} \times \frac{1}{5}}{\frac{1}{5} \div \frac{1}{5} \text{ of } \frac{1}{5} - 4 \cdot \frac{1}{5} \div 105}\), we will follow the order of operations (BODMAS/BIDMAS). ### Step-by-Step Solution: **Step 1: Simplify the numerator** - The numerator is \(\frac{1}{5} \div \frac{1}{5} \times \frac{1}{5}\). - First, calculate \(\frac{1}{5} \div \frac{1}{5} = 1\). - Now, multiply by \(\frac{1}{5}\): \[ 1 \times \frac{1}{5} = \frac{1}{5}. \] **Step 2: Simplify the denominator** - The denominator is \(\frac{1}{5} \div \frac{1}{5} \text{ of } \frac{1}{5} - 4 \cdot \frac{1}{5} \div 105\). - First, calculate \(\frac{1}{5} \div \frac{1}{5} = 1\). - Next, calculate \(1 \text{ of } \frac{1}{5} = \frac{1}{5}\). - So, the first part of the denominator simplifies to \(\frac{1}{5}\). - Now, calculate \(4 \cdot \frac{1}{5} \div 105\): - \(4 \cdot \frac{1}{5} = \frac{4}{5}\). - Now, divide by 105: \[ \frac{4}{5} \div 105 = \frac{4}{5} \times \frac{1}{105} = \frac{4}{525}. \] - Now, combine the two parts of the denominator: \[ \frac{1}{5} - \frac{4}{525}. \] - To subtract these fractions, find a common denominator. The common denominator is 525: \[ \frac{1}{5} = \frac{105}{525}. \] - Now perform the subtraction: \[ \frac{105}{525} - \frac{4}{525} = \frac{101}{525}. \] **Step 3: Combine the results** - Now we have: \[ \frac{\frac{1}{5}}{\frac{101}{525}}. \] - Dividing by a fraction is the same as multiplying by its reciprocal: \[ \frac{1}{5} \times \frac{525}{101} = \frac{525}{505}. \] **Step 4: Simplify the final fraction** - Simplifying \(\frac{525}{505}\): \[ \frac{525 \div 5}{505 \div 5} = \frac{105}{101}. \] ### Final Answer: The value of the expression is \(\frac{105}{101}\).
Promotional Banner

Similar Questions

Explore conceptually related problems

4(4)/(5)-:{2(1)/(5)-(1)/(2)(1(1)/(4)-(1)/(4)-(1)/(5))}

4(4)/(5)-:{2(1)/(5)-(1)/(2)(1(1)/(4)-(bar((1)/(4)-(1)/(5))))}

(3(1)/(4)-(4)/(5)(5)/(6))/(4(1)/(3)+(1)/(5)-((3)/(10)+21(1)/(5)))=?

What is the value of (1)/(5)+(1)/(5)+(1)/(5)+(1)/(5)+(1)/(5)+5+5+5 ?

The value of (33)/(40)+(1)/(5)[(4)/(5)-(1)/(5)xx((7)/(8)-(5)/(4))] is :

4(4)/(5)-:(3)/(5) of 5+(4)/(5)xx(3)/(10)-(1)/(5)

The value of (1+i)^5 xx (1-i)^5

(3(1)/(4)-(4)/(5) "of"(5)/(6))/(4(1)/(3)-: (1)/(5)-((3)/(10)+21(1)/(5)))

The value of [(1)/(3)]^(-1)-((1)/(4))^(-7)}+[((1)/(4))^(-1)-((1)/(5))^(-1)]+[((1)/(5))^(-1)-((1)/(6))^(-1)]^(2)] is

the value of 4-(5)/(1+(5)/(3+(1)/(2(1)/(4)))) is