Home
Class 14
MATHS
If x= sqrt3/2, then the value of (sqrt(1...

If `x= sqrt3/2`, then the value of `(sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x))` is equal to:

A

`sqrt(2)`

B

`sqrt(3)`

C

`3`

D

`2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= sqrt3/2 , then the value of sqrt(1+x)+sqrt(1-x) is

The value of (sqrt(1 + sin x )+sqrt(1 - sin x))/(sqrt(1 + sin x )-sqrt(1-sin x)) is equal to

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

int(1+x+sqrt(x+x^(2)))/(sqrt(x)+sqrt(1+x))dx is equal to

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

If x=(sqrt(3))/(2), then the value of (1+x)/(sqrt(1+x)-1)+(1-x)/(1-sqrt(1-x))