Home
Class 14
MATHS
("sec"theta+"tan"theta)/("sec"theta-"tan...

`("sec"theta+"tan"theta)/("sec"theta-"tan"theta)` is equal to:

A

A)`1/("sec"theta-"tan"theta)`

B

B)`1/("sec"theta+"tan"theta)`

C

C)`("sec"theta+"tan"theta)^(2)`

D

D)`("sec"theta-"tan"theta)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sec \theta + \tan \theta}{\sec \theta - \tan \theta}\), we can follow these steps: ### Step 1: Multiply by the Conjugate We will multiply both the numerator and the denominator by the conjugate of the denominator, which is \(\sec \theta + \tan \theta\). \[ \frac{\sec \theta + \tan \theta}{\sec \theta - \tan \theta} \cdot \frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta} \] ### Step 2: Apply the Difference of Squares Formula This multiplication gives us: \[ \frac{(\sec \theta + \tan \theta)^2}{(\sec \theta - \tan \theta)(\sec \theta + \tan \theta)} \] Using the difference of squares formula \(a^2 - b^2 = (a-b)(a+b)\), we can simplify the denominator: \[ \sec^2 \theta - \tan^2 \theta \] ### Step 3: Simplify the Denominator We know from the Pythagorean identity that: \[ \sec^2 \theta - \tan^2 \theta = 1 \] So, we can substitute this into our expression: \[ \frac{(\sec \theta + \tan \theta)^2}{1} = (\sec \theta + \tan \theta)^2 \] ### Final Answer Thus, the expression simplifies to: \[ \sec \theta + \tan \theta)^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1+sec theta-tan theta)/(1+sec theta+tan theta)=

(sec theta+tan theta)/(sec theta-tan theta)+(sec theta-tan theta)/(sec theta+tan theta)

(cot theta)/((1-sin theta)(sec theta + tan theta)) is equal to :

The value of log[(sec theta+tan theta)(sec theta-tan theta)] is ________

(cot theta)/((1-sin theta) (sec theta + tan theta)) is equal to:

If : sec theta * tan theta (sectheta + tan theta) + (sec theta - tan theta) = sec^(n) theta + tan^(n) theta, "then" : n = A)1 B)2 C)3 D)4

Prove that (sec^(2)theta-tan theta)/(sec^(2)theta+tan theta) lies between 3 and (1)/(3).

Show that: (sec^(2)theta-tan theta)/(sec^(2)theta+tan theta) lies between 3 and (1)/(3)