Home
Class 14
MATHS
If x+1/(x)=5, then the value of x^(2)+1/...

If `x+1/(x)=5`, then the value of `x^(2)+1/(x^(2))` is:

A

A)23

B

B)25

C

C)29

D

D)27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 5 \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ x + \frac{1}{x} = 5 \] Now, we square both sides: \[ \left( x + \frac{1}{x} \right)^2 = 5^2 \] ### Step 2: Expand the left side Using the identity \( (a + b)^2 = a^2 + 2ab + b^2 \), we expand the left side: \[ x^2 + 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 25 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 25 \] ### Step 3: Isolate \( x^2 + \frac{1}{x^2} \) Now, we need to isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} + 2 = 25 \] Subtract 2 from both sides: \[ x^2 + \frac{1}{x^2} = 25 - 2 \] ### Step 4: Calculate the final value Now, we perform the subtraction: \[ x^2 + \frac{1}{x^2} = 23 \] Thus, the value of \( x^2 + \frac{1}{x^2} \) is \( 23 \). ### Final Answer \[ \boxed{23} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x(x-2)= 1 , then the value of x^(2) + (1)/(x^(2)) is .

If x-(1)/(x)=5 find the values of x^(2)+(1)/(x^(2))

If x+(1)/(x)=3 and x^(2)+(1)/(x^(3))=5 then the value of x^(3)+(1)/(x^(2)) is

If x + 1/x = 2 , then the value of x^2 + 1/(x^2) is :

If x+(1)/(x)=5 , then find the value of x^(2)+(1)/(x^(2)) .

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

if x+(1)/(x)=5 the value of (x^(4)+1)/(x^(2)) is