Home
Class 14
MATHS
If a=(2 + sqrt(3))/(2-sqrt(3)) and b = (...

If `a=(2 + sqrt(3))/(2-sqrt(3)) and b = (2-sqrt(3))/(2+ sqrt(3))`, then the value of `a^(2)+b^(2)+ab` is :

A

A)195

B

B)185

C

C)196

D

D)186

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 + ab \) where \[ a = \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \quad \text{and} \quad b = \frac{2 - \sqrt{3}}{2 + \sqrt{3}}. \] ### Step 1: Simplify \( a \) and \( b \) First, we will simplify \( a \): \[ a = \frac{2 + \sqrt{3}}{2 - \sqrt{3}}. \] To simplify \( a \), we multiply the numerator and denominator by the conjugate of the denominator: \[ a = \frac{(2 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{(2 + \sqrt{3})^2}{2^2 - (\sqrt{3})^2}. \] Calculating the denominator: \[ 2^2 - (\sqrt{3})^2 = 4 - 3 = 1. \] Calculating the numerator: \[ (2 + \sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3}. \] Thus, \[ a = 7 + 4\sqrt{3}. \] Now, we simplify \( b \): \[ b = \frac{2 - \sqrt{3}}{2 + \sqrt{3}}. \] Using the conjugate of the denominator again: \[ b = \frac{(2 - \sqrt{3})(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})} = \frac{(2 - \sqrt{3})^2}{2^2 - (\sqrt{3})^2}. \] The denominator remains the same: \[ 2^2 - (\sqrt{3})^2 = 1. \] Calculating the numerator: \[ (2 - \sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3}. \] Thus, \[ b = 7 - 4\sqrt{3}. \] ### Step 2: Calculate \( a + b \) and \( ab \) Now, we calculate \( a + b \): \[ a + b = (7 + 4\sqrt{3}) + (7 - 4\sqrt{3}) = 14. \] Next, we calculate \( ab \): \[ ab = \left( \frac{2 + \sqrt{3}}{2 - \sqrt{3}} \right) \left( \frac{2 - \sqrt{3}}{2 + \sqrt{3}} \right) = \frac{(2 + \sqrt{3})(2 - \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2^2 - (\sqrt{3})^2}{2^2 - (\sqrt{3})^2} = \frac{1}{1} = 1. \] ### Step 3: Calculate \( a^2 + b^2 + ab \) Using the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab, \] we can substitute the values we found: \[ a^2 + b^2 = (14)^2 - 2(1) = 196 - 2 = 194. \] Now, we can find \( a^2 + b^2 + ab \): \[ a^2 + b^2 + ab = 194 + 1 = 195. \] ### Final Answer Thus, the value of \( a^2 + b^2 + ab \) is \[ \boxed{195}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a = (2 + sqrt3)/(2 - sqrt3) and b = (2 - sqrt3)/(2 + sqrt3) , then the value of (a^(2) + b^(2) +ab) is :

If a = (2 + sqrt3)/(2-sqrt3) and b = (2-sqrt3)/(2+sqrt3) then the value of (a^2+b^2+ab) is

If a=(sqrt(3)+1)/(sqrt(3)-1) and b=(sqrt(3)-1)/(sqrt(3)+1) ,find the value of a^(2)+ab-b^(2)

If a=(2+ sqrt3)/(2- sqrt3) and b=(2- sqrt3)/(2+sqrt3) , then the value of a^2+b^2+ab is: यदि a=(2+ sqrt3)/(2- sqrt3) और b=(2- sqrt3)/(2+sqrt3) , तो a^2+b^2+ab का मान:

If a=(3-sqrt(5))/(3+sqrt(5)) and b=(3+sqrt(5))/(3-sqrt(5)) ,find the value of a^(2)+b^(2)

If a=(1)/(3-2sqrt(2)),b=(1)/(3+2sqrt(2)) then the value of a^(2)+b^(2) is

If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) , then value of a^(2) + b^(2) is