Home
Class 12
MATHS
3/(1^2 2^2)+5/(2^2 3^2)+7/(3^2 4^2)+ . ....

`3/(1^2 2^2)+5/(2^2 3^2)+7/(3^2 4^2)+ . . . ` upto 10th term

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \ldots \) up to the 10th term, we first need to identify the general term of the series. ### Step 1: Identify the General Term The general term \( T_n \) can be expressed as: \[ T_n = \frac{2n + 1}{n^2 \cdot (n + 1)^2} \] where \( n \) ranges from 1 to 10. ### Step 2: Rewrite the General Term We can simplify \( T_n \): \[ T_n = \frac{2n + 1}{n^2 (n + 1)^2} = \frac{(n + 1)^2 - n^2}{n^2 (n + 1)^2} \] This can be rewritten as: \[ T_n = \frac{1}{n^2} - \frac{1}{(n + 1)^2} \] ### Step 3: Sum the Series Now, we can express the sum \( S \) as: \[ S = \sum_{n=1}^{10} T_n = \sum_{n=1}^{10} \left( \frac{1}{n^2} - \frac{1}{(n + 1)^2} \right) \] This is a telescoping series. When we expand it, we get: \[ S = \left( \frac{1}{1^2} - \frac{1}{2^2} \right) + \left( \frac{1}{2^2} - \frac{1}{3^2} \right) + \left( \frac{1}{3^2} - \frac{1}{4^2} \right) + \ldots + \left( \frac{1}{10^2} - \frac{1}{11^2} \right) \] ### Step 4: Simplify the Sum In the telescoping series, all intermediate terms cancel out: \[ S = \frac{1}{1^2} - \frac{1}{11^2} \] Calculating this gives: \[ S = 1 - \frac{1}{121} = \frac{121}{121} - \frac{1}{121} = \frac{120}{121} \] ### Final Answer Thus, the sum of the series up to the 10th term is: \[ \boxed{\frac{120}{121}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum 3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+. . . + upto 20 terms is equal to k/21, then k is equal to

the sum (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto 11 terms

Sum of first 20 terms of (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... upto 20 terms is :

The sum of series (1)/(2)+(3)/(2^(2))+(5)/(2^(3))+(7)/(2^(4))+... up to infinite terms is equal to

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto n terms,is

Find the value of 1 ^(3) + 2 ^(3) + 3 ^(3) + ...+ upto 10th terms.

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

The sum of series 1/(1-3.1^2+1^4)+2/(1-3.3^2+2^4)+3/(1-3.3^2+3^4)+......... up to 10 terms, is equal to