Home
Class 12
MATHS
I=int(-1/2)^1 (abs(2x)+absx)dx Find the ...

`I=int_(-1/2)^1 (abs(2x)+absx)dx` Find the value of 8I

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{1}{2}}^{1} \left( |2x| + |x| \right) dx \), we can break it down into two parts based on the properties of the absolute value function. ### Step 1: Break the integral into parts We can separate the integral into two parts: \[ I = \int_{-\frac{1}{2}}^{1} |2x| \, dx + \int_{-\frac{1}{2}}^{1} |x| \, dx \] ### Step 2: Evaluate \( \int_{-\frac{1}{2}}^{1} |2x| \, dx \) We need to consider the intervals where the expression inside the absolute value changes: - For \( x < 0 \) (i.e., from \( -\frac{1}{2} \) to \( 0 \)), \( |2x| = -2x \). - For \( x \geq 0 \) (i.e., from \( 0 \) to \( 1 \)), \( |2x| = 2x \). Thus, we can write: \[ \int_{-\frac{1}{2}}^{1} |2x| \, dx = \int_{-\frac{1}{2}}^{0} (-2x) \, dx + \int_{0}^{1} (2x) \, dx \] Calculating each part: 1. For \( \int_{-\frac{1}{2}}^{0} (-2x) \, dx \): \[ = -2 \left[ \frac{x^2}{2} \right]_{-\frac{1}{2}}^{0} = -2 \left( 0 - \frac{(-\frac{1}{2})^2}{2} \right) = -2 \left( 0 - \frac{1}{8} \right) = \frac{1}{4} \] 2. For \( \int_{0}^{1} (2x) \, dx \): \[ = 2 \left[ \frac{x^2}{2} \right]_{0}^{1} = 2 \left( \frac{1^2}{2} - 0 \right) = 2 \cdot \frac{1}{2} = 1 \] Combining these results: \[ \int_{-\frac{1}{2}}^{1} |2x| \, dx = \frac{1}{4} + 1 = \frac{5}{4} \] ### Step 3: Evaluate \( \int_{-\frac{1}{2}}^{1} |x| \, dx \) Similarly, we evaluate \( |x| \): - For \( x < 0 \) (i.e., from \( -\frac{1}{2} \) to \( 0 \)), \( |x| = -x \). - For \( x \geq 0 \) (i.e., from \( 0 \) to \( 1 \)), \( |x| = x \). Thus, we can write: \[ \int_{-\frac{1}{2}}^{1} |x| \, dx = \int_{-\frac{1}{2}}^{0} (-x) \, dx + \int_{0}^{1} (x) \, dx \] Calculating each part: 1. For \( \int_{-\frac{1}{2}}^{0} (-x) \, dx \): \[ = -\left[ \frac{x^2}{2} \right]_{-\frac{1}{2}}^{0} = -\left( 0 - \frac{(-\frac{1}{2})^2}{2} \right) = \frac{1}{8} \] 2. For \( \int_{0}^{1} (x) \, dx \): \[ = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - 0 = \frac{1}{2} \] Combining these results: \[ \int_{-\frac{1}{2}}^{1} |x| \, dx = \frac{1}{8} + \frac{1}{2} = \frac{1}{8} + \frac{4}{8} = \frac{5}{8} \] ### Step 4: Combine both integrals Now we combine the results of both integrals: \[ I = \frac{5}{4} + \frac{5}{8} \] To add these, we find a common denominator (which is 8): \[ I = \frac{10}{8} + \frac{5}{8} = \frac{15}{8} \] ### Step 5: Find \( 8I \) Finally, we compute \( 8I \): \[ 8I = 8 \cdot \frac{15}{8} = 15 \] Thus, the final answer is: \[ \boxed{15} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

I =int_-2^2 abs(3x^2-3x-6)dx . Find the value of I

If " " I=int_0^(pi/4) dx/(1+cos2x) Find the value of 2I

I=int_(-1)^(1)log((2-x)/(2+x))dx

Let I_1=int_0^1e^(x^2)dx and I_2=int_0^(12)2^(x^2)e^(x^2)dx then the value of I_1 +I_2 is equal to

Let f : R to R be continuous function such that f (x) + f (x+1) = 2, for all x in R. If I _(1) int_(0) ^(8) f (x) dx and I _(2) = int _(-1) ^(3) f (x) dx, then the value of I _(2) +2 I _(2) is equal to "________"

If I=int_(1)^(2)(dx)/(sqrt(x)-sqrt(x-1)) , then value of (9)/(32)(l)^(2) , is _________.

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx The value of I^(-1) .

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx. The value of I^(-1) .