Home
Class 12
MATHS
If abs(3veca+vecb)=abs(2veca+3vecb) and ...

If `abs(3veca+vecb)=abs(2veca+3vecb)` and angle between `veca and vecb` is `60^@` and `veca/8` is a unit vector then find the magnitude of `vecb`

A

5

B

6

C

8

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation and the conditions provided: 1. We have the equation: \[ |\vec{3a} + \vec{b}| = |\vec{2a} + \vec{3b}| \] 2. The angle between \(\vec{a}\) and \(\vec{b}\) is \(60^\circ\). 3. The vector \(\frac{\vec{a}}{8}\) is a unit vector, which implies: \[ |\vec{a}| = 8 \] ### Step 1: Squaring Both Sides We square both sides of the equation: \[ |\vec{3a} + \vec{b}|^2 = |\vec{2a} + \vec{3b}|^2 \] ### Step 2: Expanding Both Sides Using the formula \( |\vec{x} + \vec{y}|^2 = |\vec{x}|^2 + |\vec{y}|^2 + 2|\vec{x}||\vec{y}|\cos\theta \): - Left Side: \[ |\vec{3a} + \vec{b}|^2 = |\vec{3a}|^2 + |\vec{b}|^2 + 2|\vec{3a}||\vec{b}|\cos(60^\circ) \] \[ = 9|\vec{a}|^2 + |\vec{b}|^2 + 3|\vec{b}| \] - Right Side: \[ |\vec{2a} + \vec{3b}|^2 = |\vec{2a}|^2 + |\vec{3b}|^2 + 2|\vec{2a}||\vec{3b}|\cos(60^\circ) \] \[ = 4|\vec{a}|^2 + 9|\vec{b}|^2 + 6|\vec{b}| \] ### Step 3: Substituting the Magnitudes Since \( |\vec{a}| = 8 \): - Left Side: \[ = 9(8^2) + |\vec{b}|^2 + 3|\vec{b}| = 576 + |\vec{b}|^2 + 3|\vec{b}| \] - Right Side: \[ = 4(8^2) + 9|\vec{b}|^2 + 6|\vec{b}| = 256 + 9|\vec{b}|^2 + 6|\vec{b}| \] ### Step 4: Setting the Equations Equal Now we equate both sides: \[ 576 + |\vec{b}|^2 + 3|\vec{b}| = 256 + 9|\vec{b}|^2 + 6|\vec{b}| \] ### Step 5: Rearranging the Equation Rearranging gives: \[ 576 - 256 + |\vec{b}|^2 - 9|\vec{b}|^2 + 3|\vec{b}| - 6|\vec{b}| = 0 \] \[ 320 - 8|\vec{b}|^2 - 3|\vec{b}| = 0 \] ### Step 6: Forming a Quadratic Equation Rearranging the equation gives: \[ 8|\vec{b}|^2 + 3|\vec{b}| - 320 = 0 \] ### Step 7: Solving the Quadratic Equation Using the quadratic formula \( |\vec{b}| = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 8 \), \( b = 3 \), and \( c = -320 \): \[ |\vec{b}| = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 8 \cdot (-320)}}{2 \cdot 8} \] \[ = \frac{-3 \pm \sqrt{9 + 10240}}{16} \] \[ = \frac{-3 \pm \sqrt{10249}}{16} \] \[ = \frac{-3 \pm 101.24}{16} \] Calculating the two possible values: 1. \( |\vec{b}| = \frac{98.24}{16} \approx 6.14 \) 2. \( |\vec{b}| = \frac{-104.24}{16} \) (not valid as magnitude cannot be negative) Thus, the magnitude of \(\vec{b}\) is approximately: \[ |\vec{b}| \approx 6.14 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

Let veca and vecb be two vectors such that |2 veca + 3 vecb| = |3 veca + vecb| and the angle between veca and vecb is 60^(@) . If 1/8 veca is a unit vector, then |vecb| is equal to :

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .

If |vecA-vecB|=|vecA|=|vecB| , the angle between vecA and vecB is

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

veca*vecb=abs(vecaxxvecb) then abs(veca-vecb) is

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |veca|=3, |vecb|=4 and the angle between veca and vecb is 120^(@) . Then find the value of |4 veca + 3vecb|