Home
Class 14
MATHS
DeltaXYZ is right angled at Y. If mangle...

`DeltaXYZ` is right angled at Y. If `mangleX = 60^@`, then find the value of `(secz + 2/ sqrt3)`.

A

`4// sqrt3`

B

`(sqrt2+2)//2sqrt2`

C

`7//2sqrt3`

D

`4//2sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sec Z + \frac{2}{\sqrt{3}} \) given that triangle \( \Delta XYZ \) is right-angled at \( Y \) and \( \angle X = 60^\circ \). ### Step-by-Step Solution: 1. **Identify the Angles in Triangle XYZ**: Since triangle \( XYZ \) is right-angled at \( Y \) and \( \angle X = 60^\circ \), we can find \( \angle Z \). \[ \angle Y = 90^\circ, \quad \angle X = 60^\circ \] The sum of angles in a triangle is \( 180^\circ \): \[ \angle X + \angle Y + \angle Z = 180^\circ \] Substituting the known angles: \[ 60^\circ + 90^\circ + \angle Z = 180^\circ \] \[ \angle Z = 180^\circ - 150^\circ = 30^\circ \] 2. **Calculate \( \sec Z \)**: The secant function is defined as the reciprocal of the cosine function: \[ \sec Z = \frac{1}{\cos Z} \] For \( \angle Z = 30^\circ \): \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] Therefore: \[ \sec Z = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] 3. **Add \( \sec Z \) and \( \frac{2}{\sqrt{3}} \)**: Now we need to find \( \sec Z + \frac{2}{\sqrt{3}} \): \[ \sec Z + \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{2 + 2}{\sqrt{3}} = \frac{4}{\sqrt{3}} \] ### Final Answer: Thus, the value of \( \sec Z + \frac{2}{\sqrt{3}} \) is \( \frac{4}{\sqrt{3}} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

DeltaXYZ is right angled at Y .If mangleX=60^(@) , then find the value of (cot Z+2).

DeltaXYZ is right angled at Y . If mangleX=60^(@) , then find the value of (SecZ+(2)/(sqrt(3)))

DeltaXYZ is right angled at Y. If m angleZ=30^(@) , then find the value of (cosX-1//sqrt(3))