Home
Class 14
MATHS
If tan x = cot (2x - 48), then find the ...

If tan x = cot (2x - 48), then find the value of x.

A

`32^@`

B

`25^@`

C

`60^@`

D

`46^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan x = \cot(2x - 48) \), we can follow these steps: ### Step 1: Rewrite the cotangent in terms of tangent We know that \( \cot \theta = \frac{1}{\tan \theta} \). Therefore, we can rewrite the equation: \[ \tan x = \cot(2x - 48) = \frac{1}{\tan(2x - 48)} \] ### Step 2: Cross-multiply Cross-multiplying gives us: \[ \tan x \cdot \tan(2x - 48) = 1 \] ### Step 3: Use the identity for tangent We can also use the identity \( \tan A \tan B = 1 \) when \( A + B = 90^\circ \). This means: \[ x + (2x - 48) = 90 \] ### Step 4: Simplify the equation Now, simplify the equation: \[ x + 2x - 48 = 90 \] \[ 3x - 48 = 90 \] ### Step 5: Solve for x Add 48 to both sides: \[ 3x = 90 + 48 \] \[ 3x = 138 \] Now, divide by 3: \[ x = \frac{138}{3} = 46 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{46} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan 3x = cot (30^@+2x) , then what is the value of x? यदि tan 3x = cot (30^@+2x) है, तो x का मान क्या है?

Is |tan x+cot x|<|tan x|+|cot x| true for any x? If it is true,then find the values of x.

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

tan x+cot x=2

If x : 35 :: 48 : 60 , find the value of x.

If sec x+tan x=(22)/(7) find the value of tan((x)/(2)) use it to deduce the value of cos ecx+cot x

If sec x+tan x=(22)/(7) find the value of tan((x)/(2)). use it to deduce the value of cos ecx+cot x