Home
Class 14
MATHS
Find the value of (tan 40^@ sec 50^@)/(c...

Find the value of `(tan 40^@ sec 50^@)/(cot 50^@ cosec 40^@) + sin 50^@ cos 40^@ + cos^2 50^@ + tan 30^@`

A

`sqrt""3`

B

`sqrt""3 + 2`

C

`(2 + sqrt(2))/(sqrt(3))`

D

`(2sqrt(3) + 1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\tan 40^\circ \sec 50^\circ) / (\cot 50^\circ \csc 40^\circ) + \sin 50^\circ \cos 40^\circ + \cos^2 50^\circ + \tan 30^\circ\), we will break it down step-by-step. ### Step 1: Rewrite Trigonometric Functions Using the identities: - \(\tan(90^\circ - \theta) = \cot \theta\) - \(\sec(90^\circ - \theta) = \csc \theta\) - \(\cos(90^\circ - \theta) = \sin \theta\) We can rewrite \(\tan 40^\circ\) and \(\sec 50^\circ\): \[ \tan 40^\circ = \cot 50^\circ \quad \text{and} \quad \sec 50^\circ = \csc 40^\circ \] ### Step 2: Substitute in the Expression Now substituting these identities into the expression: \[ \frac{\tan 40^\circ \sec 50^\circ}{\cot 50^\circ \csc 40^\circ} = \frac{\cot 50^\circ \csc 40^\circ}{\cot 50^\circ \csc 40^\circ} = 1 \] ### Step 3: Simplify the Remaining Terms Now we simplify the remaining terms: \[ 1 + \sin 50^\circ \cos 40^\circ + \cos^2 50^\circ + \tan 30^\circ \] We know that: \(\tan 30^\circ = \frac{1}{\sqrt{3}}\) ### Step 4: Simplify \(\sin 50^\circ \cos 40^\circ\) Using the identity \(\sin 50^\circ = \cos 40^\circ\): \[ \sin 50^\circ \cos 40^\circ = \cos 40^\circ \cos 40^\circ = \cos^2 40^\circ \] ### Step 5: Combine Terms Now we can combine: \[ 1 + \cos^2 40^\circ + \cos^2 50^\circ + \frac{1}{\sqrt{3}} \] Using the identity \(\cos^2 \theta + \sin^2 \theta = 1\), we know: \(\cos^2 40^\circ + \cos^2 50^\circ = 1 - \sin^2 40^\circ + 1 - \sin^2 50^\circ\) ### Step 6: Final Calculation Since \(\sin^2 40^\circ + \sin^2 50^\circ = 1\): \[ 1 + 1 + \frac{1}{\sqrt{3}} = 2 + \frac{1}{\sqrt{3}} \] ### Step 7: Find a Common Denominator To express \(2\) in terms of \(\sqrt{3}\): \[ 2 = \frac{2\sqrt{3}}{\sqrt{3}} \] Thus: \[ 2 + \frac{1}{\sqrt{3}} = \frac{2\sqrt{3} + 1}{\sqrt{3}} \] ### Final Answer The final value of the expression is: \[ \frac{2\sqrt{3} + 1}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of tan20^(@)+2tan50^(@)

Find the value of sin50^(@)-cos40^(@) .

Evaluate tan 40^@ xx tan 50^@

The value of (tan30^@ cosec 60^@+tan60^@ sec 30^@)/(sin^2 30^@+4cot^2 45^@-sec^2 60^@) is: (tan30^@ cosec 60^@+tan60^@ sec 30^@)/(sin^2 30^@+4cot^2 45^@-sec^2 60^@) का मान है :

Find the value of (sin 50^(@))/(cos40^(@))+("cosec"40^(@))/(sec 50^(@))-4cos 50^(@) " cosec"40^(@).

Find the value of x. x% of 50 = 40

Evaluate : tan 40^(@)xxtan 50^(@)

Find the value of : 50-(-40)-(-2)