Home
Class 14
MATHS
If Cos theta = sqrt3//2 , then find the ...

If `Cos theta = sqrt3//2` , then find the value of `(2 sin^2 theta)/((1-cot^2 theta)) + (sec^2 theta + cosec theta)`

A

29/12

B

43/12

C

37/12

D

19/12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression given that \( \cos \theta = \frac{\sqrt{3}}{2} \). ### Step 1: Find \( \sin^2 \theta \) We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the value of \( \cos \theta \): \[ \sin^2 \theta + \left(\frac{\sqrt{3}}{2}\right)^2 = 1 \] Calculating \( \left(\frac{\sqrt{3}}{2}\right)^2 \): \[ \sin^2 \theta + \frac{3}{4} = 1 \] Now, solving for \( \sin^2 \theta \): \[ \sin^2 \theta = 1 - \frac{3}{4} = \frac{1}{4} \] ### Step 2: Find \( \cot^2 \theta \) We know that: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \] Substituting the values we have: \[ \cot \theta = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3} \] Now, calculating \( \cot^2 \theta \): \[ \cot^2 \theta = (\sqrt{3})^2 = 3 \] ### Step 3: Substitute values into the expression We need to evaluate: \[ \frac{2 \sin^2 \theta}{1 - \cot^2 \theta} + \sec^2 \theta + \csc \theta \] Substituting \( \sin^2 \theta \) and \( \cot^2 \theta \): \[ \frac{2 \cdot \frac{1}{4}}{1 - 3} + \sec^2 \theta + \csc \theta \] Calculating the denominator: \[ 1 - 3 = -2 \] Now substituting: \[ \frac{\frac{1}{2}}{-2} + \sec^2 \theta + \csc \theta = -\frac{1}{4} + \sec^2 \theta + \csc \theta \] ### Step 4: Find \( \sec^2 \theta \) and \( \csc \theta \) Calculating \( \sec^2 \theta \): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \quad \Rightarrow \quad \sec^2 \theta = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3} \] Calculating \( \csc \theta \): \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{1}{2}} = 2 \] ### Step 5: Substitute \( \sec^2 \theta \) and \( \csc \theta \) back into the expression Now substituting these values: \[ -\frac{1}{4} + \frac{4}{3} + 2 \] Converting \( 2 \) to a fraction: \[ 2 = \frac{6}{3} \] Now combining: \[ -\frac{1}{4} + \frac{4}{3} + \frac{6}{3} = -\frac{1}{4} + \frac{10}{3} \] ### Step 6: Find a common denominator The common denominator between 4 and 3 is 12: \[ -\frac{1}{4} = -\frac{3}{12}, \quad \frac{10}{3} = \frac{40}{12} \] Now combining: \[ -\frac{3}{12} + \frac{40}{12} = \frac{37}{12} \] ### Final Answer Thus, the value of the expression is: \[ \frac{37}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cot theta = 1/sqrt3 then the value of (2 - sin^(2)theta)/(1- cos^(2)theta) + (cosec^(2) theta + sec theta) is: यदि cot theta = 1/sqrt3 है तो (2 - sin^(2)theta)/(1- cos^(2)theta) + (cosec^(2) theta + sec theta) का मान हैः

The value of sin^2 theta cos^2 theta (sec^2 theta + cosec^2 theta ) is

If Cot theta=1/sqrt3 , then the value of (2-sin^2 theta)/(1-cos^2 theta)+cosec^2 theta+sec theta is: यदि Cot theta=1/sqrt3 , है, तो (2-sin^2 theta)/(1-cos^2 theta)+cosec^2 theta+sec theta का मान ज्ञात करें |

If cos theta=(sqrt(3))/2 then find the value of (1-sec theta)/(1+cosec theta)

If sec theta (cos theta + sin theta) = sqrt2 , then what is the value of (2 sin theta)//(cos theta- sin theta) ? यदि sec theta (cos theta + sin theta) = sqrt2 है,तो (2 sin theta)//(cos theta- sin theta) का मान क्या है?

If cot theta= sqrt7 , then the value of (cosec^2 theta-sec^2 theta)/(cosec^2 theta+sec^2 theta) is: यदि cot theta= sqrt7 , है, तो (cosec^2 theta-sec^2 theta)/(cosec^2 theta+sec^2 theta) का मान क्या होगा ?

If Cot theta=sqrt6 , then the value of (cosec^2 theta+sec^2 theta)/(cosec^2 theta-sec^2 theta) is: यदि Cot theta=sqrt6 ,है, तो (cosec^2 theta+sec^2 theta)/(cosec^2 theta-sec^2 theta) का मान ज्ञात करें |