Home
Class 14
MATHS
If the value of sqrt5 = 2.236 then calcu...

If the value of `sqrt5 = 2.236` then calculate the value of `sqrt(405) - 1/2 sqrt(80)- sqrt(125)`

A

2.236

B

4.472

C

1.118

D

8.994

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{405} - \frac{1}{2} \sqrt{80} - \sqrt{125} \) given that \( \sqrt{5} = 2.236 \), we can follow these steps: ### Step 1: Simplify each square root 1. **Calculate \( \sqrt{405} \)**: - We can factor \( 405 \) as \( 81 \times 5 \). - Therefore, \( \sqrt{405} = \sqrt{81 \times 5} = \sqrt{81} \times \sqrt{5} = 9\sqrt{5} \). 2. **Calculate \( \sqrt{80} \)**: - We can factor \( 80 \) as \( 16 \times 5 \). - Therefore, \( \sqrt{80} = \sqrt{16 \times 5} = \sqrt{16} \times \sqrt{5} = 4\sqrt{5} \). 3. **Calculate \( \sqrt{125} \)**: - We can factor \( 125 \) as \( 25 \times 5 \). - Therefore, \( \sqrt{125} = \sqrt{25 \times 5} = \sqrt{25} \times \sqrt{5} = 5\sqrt{5} \). ### Step 2: Substitute back into the expression Now we substitute these values back into the original expression: \[ \sqrt{405} - \frac{1}{2} \sqrt{80} - \sqrt{125} = 9\sqrt{5} - \frac{1}{2}(4\sqrt{5}) - 5\sqrt{5} \] ### Step 3: Simplify the expression 1. **Calculate \( \frac{1}{2}(4\sqrt{5}) \)**: - This simplifies to \( 2\sqrt{5} \). 2. **Now substitute this back**: \[ 9\sqrt{5} - 2\sqrt{5} - 5\sqrt{5} \] 3. **Combine like terms**: \[ (9\sqrt{5} - 2\sqrt{5} - 5\sqrt{5}) = (9 - 2 - 5)\sqrt{5} = 2\sqrt{5} \] ### Step 4: Substitute the value of \( \sqrt{5} \) Now we substitute the value of \( \sqrt{5} = 2.236 \): \[ 2\sqrt{5} = 2 \times 2.236 = 4.472 \] ### Final Answer Thus, the value of the expression \( \sqrt{405} - \frac{1}{2} \sqrt{80} - \sqrt{125} \) is **4.472**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sqrt(5)-2)(sqrt(5)-2) is:

The value of (sqrt(5) - 2)/(sqrt(5) + 2) is :

Calculate the value of 2(sqrt(3+sqrt(3+sqrt(3+)))...oo)

The value of (sqrt(5)+sqrt(2))^2 is:

6.The value of (sqrt(5)+sqrt(2))(sqrt(5)-sqrt(2)) is:

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))