Home
Class 14
MATHS
Determine the value of 1/(1+sqrt(2)) ...

Determine the value of
`1/(1+sqrt(2)) + 1/(sqrt2 + sqrt3) + 1/(sqrt3 + 2)`

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+2} \), we will rationalize each term and then combine them. ### Step 1: Rationalize the first term \( \frac{1}{1+\sqrt{2}} \) To rationalize this term, we multiply the numerator and denominator by the conjugate of the denominator, which is \( 1 - \sqrt{2} \): \[ \frac{1}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} \] Calculating the denominator: \[ (1+\sqrt{2})(1-\sqrt{2}) = 1^2 - (\sqrt{2})^2 = 1 - 2 = -1 \] Thus, we have: \[ \frac{1-\sqrt{2}}{-1} = \sqrt{2} - 1 \] ### Step 2: Rationalize the second term \( \frac{1}{\sqrt{2}+\sqrt{3}} \) Again, we multiply by the conjugate \( \sqrt{2} - \sqrt{3} \): \[ \frac{1}{\sqrt{2}+\sqrt{3}} \cdot \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} = \frac{\sqrt{2}-\sqrt{3}}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})} \] Calculating the denominator: \[ (\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3}) = (\sqrt{2})^2 - (\sqrt{3})^2 = 2 - 3 = -1 \] Thus, we have: \[ \frac{\sqrt{2}-\sqrt{3}}{-1} = \sqrt{3} - \sqrt{2} \] ### Step 3: Rationalize the third term \( \frac{1}{\sqrt{3}+2} \) We multiply by the conjugate \( \sqrt{3}-2 \): \[ \frac{1}{\sqrt{3}+2} \cdot \frac{\sqrt{3}-2}{\sqrt{3}-2} = \frac{\sqrt{3}-2}{(\sqrt{3}+2)(\sqrt{3}-2)} \] Calculating the denominator: \[ (\sqrt{3}+2)(\sqrt{3}-2) = (\sqrt{3})^2 - 2^2 = 3 - 4 = -1 \] Thus, we have: \[ \frac{\sqrt{3}-2}{-1} = 2 - \sqrt{3} \] ### Step 4: Combine all the rationalized terms Now we combine all three terms: \[ (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + (2 - \sqrt{3}) \] Combining like terms: - The \( \sqrt{2} \) terms: \( \sqrt{2} - \sqrt{2} = 0 \) - The \( \sqrt{3} \) terms: \( \sqrt{3} - \sqrt{3} = 0 \) - The constant terms: \( -1 + 2 = 1 \) Thus, we have: \[ 0 + 0 + 1 = 1 \] ### Final Answer The value of the expression is \( 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

1/(1+ sqrt2 + sqrt3)

1/(1-sqrt2-sqrt3)=

Determine the value of (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+1+(1)/(sqrt(120)+sqrt(121)) (a) 8 (b) 10 (c) sqrt(120) (d) 12sqrt(2)

(sqrt3 + 1)/(2sqrt2) + (sqrt3 - 1)/(2sqrt2)

(sqrt2 +1)/(sqrt3)

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

find the value of 1/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))

Evaluate : 1/( 1 + sqrt (2) ) + 1/( sqrt(2) + sqrt (3) ) + 1/ ( sqrt(3) + sqrt (4) )

Find the value of (1)/(2+sqrt(3))+(1)/(2-sqrt(3))