Home
Class 14
MATHS
What is the value if z^2 + 1/z^2 when z...

What is the value if `z^2 + 1/z^2 ` when z=`5+2sqrt6` ?

A

49

B

50

C

98

D

100

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( z^2 + \frac{1}{z^2} \) when \( z = 5 + 2\sqrt{6} \), we can follow these steps: ### Step 1: Calculate \( \frac{1}{z} \) To find \( \frac{1}{z} \), we rationalize the denominator. We multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{z} = \frac{1}{5 + 2\sqrt{6}} \cdot \frac{5 - 2\sqrt{6}}{5 - 2\sqrt{6}} = \frac{5 - 2\sqrt{6}}{(5 + 2\sqrt{6})(5 - 2\sqrt{6})} \] ### Step 2: Simplify the Denominator Now, we simplify the denominator using the difference of squares: \[ (5 + 2\sqrt{6})(5 - 2\sqrt{6}) = 5^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] Thus, \[ \frac{1}{z} = 5 - 2\sqrt{6} \] ### Step 3: Calculate \( z + \frac{1}{z} \) Now we can find \( z + \frac{1}{z} \): \[ z + \frac{1}{z} = (5 + 2\sqrt{6}) + (5 - 2\sqrt{6}) = 5 + 5 = 10 \] ### Step 4: Calculate \( z^2 + \frac{1}{z^2} \) Using the identity \( z^2 + \frac{1}{z^2} = (z + \frac{1}{z})^2 - 2 \): \[ z^2 + \frac{1}{z^2} = (10)^2 - 2 = 100 - 2 = 98 \] ### Final Answer Thus, the value of \( z^2 + \frac{1}{z^2} \) is \( \boxed{98} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(1+2i)/(2-i)-(2-i)/(1+2i), then what is the value of z^(2)+zbarz (i=sqrt(-1))

If x = 2+ sqrt3, y = 2- sqrt3 and z = 1, then what is the value of (x//yz) + (y//xz) + (z//xy) + 2[(1//x)+ (1//y) + (1//z)] ?

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

The value of (1+Iz+z^(5)+z^(8))^(9) when z=(sqrt(3)+i)/(2) is