Home
Class 14
MATHS
What is the value of (2cot 45^@ + sqrt(3...

What is the value of `(2cot 45^@ + sqrt(3) /sqrt(2))` ?

A

A) `5//6`

B

B) `(4 + sqrt()3)//2sqrt()3`

C

C) `(2sqrt()2 + sqrt()3)//sqrt2`

D

D) `3sqrt()3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(2 \cot 45^\circ + \frac{\sqrt{3}}{\sqrt{2}}\), we can follow these steps: ### Step 1: Calculate \( \cot 45^\circ \) The cotangent of \(45^\circ\) is defined as: \[ \cot 45^\circ = \frac{1}{\tan 45^\circ} = 1 \] ### Step 2: Multiply by 2 Now, we multiply the value of \( \cot 45^\circ \) by 2: \[ 2 \cot 45^\circ = 2 \times 1 = 2 \] ### Step 3: Add \( \frac{\sqrt{3}}{\sqrt{2}} \) Next, we add \(2\) to \( \frac{\sqrt{3}}{\sqrt{2}} \): \[ 2 + \frac{\sqrt{3}}{\sqrt{2}} \] ### Step 4: Find a common denominator To add these two terms, we need a common denominator. The common denominator here is \( \sqrt{2} \): \[ 2 = \frac{2\sqrt{2}}{\sqrt{2}} \] Now we can rewrite the expression: \[ \frac{2\sqrt{2}}{\sqrt{2}} + \frac{\sqrt{3}}{\sqrt{2}} = \frac{2\sqrt{2} + \sqrt{3}}{\sqrt{2}} \] ### Final Answer Thus, the value of \(2 \cot 45^\circ + \frac{\sqrt{3}}{\sqrt{2}}\) is: \[ \frac{2\sqrt{2} + \sqrt{3}}{\sqrt{2}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (sin45^(@)-sqrt(3)) ?

What is the value of (tan45^(@)+(1)/(sqrt(2))) ?

What is the value of sqrt(2) sec 45^(@)+(1)/sqrt(3) tan 30^(@)

What is the value of cot45^@ + frac(1)(3) cosec60^@ ? (A) sqrt3 + 2 (B) frac(9 + 2sqrt3)(9) (C) sqrt3 (D) frac(2sqrt2 +3) (sqrt6)