Home
Class 14
MATHS
What will be the value of (2x - 3y)^3 + ...

What will be the value of `(2x - 3y)^3 + 18xy (2x - 3y)`?

A

`8x^3 + 27y^3`

B

`8x^3 - 27y^3`

C

`8x^3 + 27 y^3 - 18 x^2y`

D

`8x^3 + 27y^3 - 18 xy^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2x - 3y)^3 + 18xy(2x - 3y)\), we can follow these steps: ### Step 1: Expand \((2x - 3y)^3\) Using the formula for the cube of a binomial, \((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\), we can expand \((2x - 3y)^3\). Let \(a = 2x\) and \(b = 3y\): \[ (2x - 3y)^3 = (2x)^3 - 3(2x)^2(3y) + 3(2x)(3y)^2 - (3y)^3 \] Calculating each term: - \((2x)^3 = 8x^3\) - \(-3(2x)^2(3y) = -3 \cdot 4x^2 \cdot 3y = -36x^2y\) - \(3(2x)(3y)^2 = 3 \cdot 2x \cdot 9y^2 = 54xy^2\) - \(-(3y)^3 = -27y^3\) Putting it all together: \[ (2x - 3y)^3 = 8x^3 - 36x^2y + 54xy^2 - 27y^3 \] ### Step 2: Expand \(18xy(2x - 3y)\) Now we expand \(18xy(2x - 3y)\): \[ 18xy(2x - 3y) = 18xy \cdot 2x - 18xy \cdot 3y = 36x^2y - 54xy^2 \] ### Step 3: Combine the two results Now we combine the results from Step 1 and Step 2: \[ (2x - 3y)^3 + 18xy(2x - 3y) = (8x^3 - 36x^2y + 54xy^2 - 27y^3) + (36x^2y - 54xy^2) \] ### Step 4: Simplify the expression Now we simplify by combining like terms: - The \(x^3\) term: \(8x^3\) - The \(x^2y\) terms: \(-36x^2y + 36x^2y = 0\) - The \(xy^2\) terms: \(54xy^2 - 54xy^2 = 0\) - The \(y^3\) term: \(-27y^3\) Thus, we have: \[ 8x^3 - 27y^3 \] ### Final Result The final value of the expression \((2x - 3y)^3 + 18xy(2x - 3y)\) is: \[ \boxed{8x^3 - 27y^3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x-4y= 0 and x+2y= 24 , then what is the value of (2x+3y)//(2x-3y) ?

If x+3y+2=0 then the value of x^3+27y^3+ 8-18xy is: यदि x+3y+2=0 है, तो x^3+27y^3+ 8-18xy का मान क्या होगा ?

If x=3 and y=4 , find the value of (i) 3x+2y (ii) 4x+3y (iii) 18xy (iv) (15x)/(12y)