Home
Class 14
MATHS
In a triangle ABC, If a perpendicular AD...

In a triangle ABC, If a perpendicular AD is drawn from point A to side BC then find the value of `angle A` if `AB = 6 sqrt3 cm, CD = 3 sqrt3 cm and AD = 9cm`

A

45°

B

90°

C

30°

D

60°

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of angle A in triangle ABC, where a perpendicular AD is drawn from point A to side BC, we will follow these steps: ### Step 1: Understand the Triangle Configuration We have triangle ABC with: - AB = 6√3 cm - CD = 3√3 cm (where D is the foot of the perpendicular from A to BC) - AD = 9 cm (the height from A to BC) ### Step 2: Identify Right Triangles Since AD is perpendicular to BC, we can analyze two right triangles: ABD and ADC. ### Step 3: Analyze Triangle ABD In triangle ABD: - AD is the perpendicular (height) = 9 cm - AB is the hypotenuse = 6√3 cm Let angle ADB be θ. We can use the sine function to find θ: \[ \sin(θ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AD}{AB} = \frac{9}{6\sqrt{3}} \] ### Step 4: Simplify the Sine Expression \[ \sin(θ) = \frac{9}{6\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2} \] ### Step 5: Find Angle θ The sine value of \(\frac{\sqrt{3}}{2}\) corresponds to: \[ θ = 60^\circ \] ### Step 6: Analyze Triangle ADC In triangle ADC: - AD is the perpendicular = 9 cm - CD is the base = 3√3 cm Let angle ADC be α. We can use the tangent function to find α: \[ \tan(α) = \frac{\text{opposite}}{\text{adjacent}} = \frac{AD}{CD} = \frac{9}{3\sqrt{3}} \] ### Step 7: Simplify the Tangent Expression \[ \tan(α) = \frac{9}{3\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] ### Step 8: Find Angle α The tangent value of \(\sqrt{3}\) corresponds to: \[ α = 60^\circ \] ### Step 9: Calculate Angle A Now, we know: - Angle ADB (θ) = 60° - Angle ADC (α) = 60° Let angle A (the angle at point A) be β. The sum of angles in triangle ABC is: \[ β + θ + α = 180^\circ \] Substituting the known angles: \[ β + 60^\circ + 60^\circ = 180^\circ \] \[ β + 120^\circ = 180^\circ \] \[ β = 180^\circ - 120^\circ = 60^\circ \] ### Final Answer Thus, the value of angle A is: \[ \boxed{60^\circ} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC ,D and E are the points on sides AC and AB, respectively, such that angle ADE= angle B . If AE = 8 cm, CD = 3 cm, DE= 6 cm and BC = 9 cm, then AD is equal to: त्रिभुज ABC में, D तथा E क्रमश भुजा AC और AB पर स्थित बिंदु है जो इस प्रकार है कि angle ADE= angle B है| यदि AE = 8 सेमी, CD = 3 सेमी, DE = 6 सेमी और BC = 9 सेमी है, तो AD का मान किसके बराबर है ?

Can we drawn a triangle, ABC with AB=3 cm, BC= 3.5 cm and Ca=65 cm ?

In triangle ABC E and D are points on sides AB and AC,respectively, such that angle ABC= angle ADE , if AE = 6cm, AD = 4 cm and EB = 4 cm, then the length of DC is: triangle ABC में, E और D क्रमशः AB और AC पर एक बिंदु हैं, जैसे कि angle ABC= angle ADE ,यदि AE = 6cm, AD = 4 cm और EB = 4 cm है, तो DC की लंबाई है:

In a triangle ABC, angleBCA = 90^(@) and CD is perpendicular to AB. If AD = 4 cm and BD = 9 cm, then the value of DC will be

In a triangle ABC, a=1cm, b=sqrt3 and C=(pi)/(6) , find the third side of the triangle :

In a triangle ABC, angle B=90^(@), AB=8 cm, BC=6cm . BD is perpendicular to AC, then find the length of CD, AD and BD.

In a triangle ABC, AB=6 sqrt 3 cm, AC = 12 cm and BC =6cm . Then measure of angle B is equal to : एक त्रिभुज ABC में, AB=6 sqrt 3 cm, AC = 12 cm और BC = 6cm| angle B का माप ज्ञात करे

In a triangle ABC, AB=17 cm, AC=9cm, AD is perpendicular on BC and AD=3 cm. Find the circum radius of this triangle.