Home
Class 14
MATHS
Find the value of root(3)(4913/2197) (a...

Find the value of `root(3)(4913/2197)`
(a)17/13
(b)13/17
(c)13/7
(d)17/7

A

17/13

B

13/17

C

13/7

D

17/7

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt[3]{\frac{4913}{2197}} \), we can follow these steps: ### Step 1: Identify the cube roots of the numerator and denominator We need to find the cube roots of both 4913 and 2197. - **Numerator**: \( 4913 \) - **Denominator**: \( 2197 \) ### Step 2: Find the cube root of 4913 Let's check if 4913 is a perfect cube. Calculating \( 17^3 \): \[ 17 \times 17 = 289 \] \[ 289 \times 17 = 4913 \] Thus, \( 4913 = 17^3 \). ### Step 3: Find the cube root of 2197 Now, let's check if 2197 is a perfect cube. Calculating \( 13^3 \): \[ 13 \times 13 = 169 \] \[ 169 \times 13 = 2197 \] Thus, \( 2197 = 13^3 \). ### Step 4: Rewrite the expression Now we can rewrite the original expression: \[ \sqrt[3]{\frac{4913}{2197}} = \sqrt[3]{\frac{17^3}{13^3}} \] ### Step 5: Simplify the expression Using the property of cube roots, we can simplify: \[ \sqrt[3]{\frac{17^3}{13^3}} = \frac{\sqrt[3]{17^3}}{\sqrt[3]{13^3}} = \frac{17}{13} \] ### Step 6: Final answer Thus, the value of \( \sqrt[3]{\frac{4913}{2197}} \) is: \[ \frac{17}{13} \] ### Conclusion The correct answer is option (a) \( \frac{17}{13} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of: -17-(-13)

1-:13/17

Find the value of : ((3.9)^2-(1.7)^2)/(3.9-1.7)

If 2=x+(1)/(1+(1)/(3+(1)/(4))), then the value of x is (12)/(17) (b) (13)/(17) (c) (18)/(17) (d) (21)/(17)

If 2*3=sqrt(13) and 3*4=5, then the value of 5*12 is sqrt(17)(b)sqrt(29)(c)12 (d) 13

Find the sum of the AP 13,15,17…..99:

Which of the following is a proper fraction? (13)/(17) (b) (17)/(13) (c) (12)/5 (d) 1 3/4

Find the value of (i) |-15| + |12| (ii) -|13|-|-7| (iii) |17|-|-9|

If 8tan x=15, then sin x-cos x is equal to (8)/(17)( b) (17)/(7)( c) (1)/(17) (d) (7)/(17)