Home
Class 14
MATHS
Find the value of xx^3 -y^3, if xx-y = 4...

Find the value of `xx^3` -`y^3`, if `xx`-y = 4 and xy =12

A

198

B

208

C

218

D

228

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 - y^3 \) given that \( x - y = 4 \) and \( xy = 12 \). ### Step-by-Step Solution: 1. **Identify the given equations:** We have: \[ x - y = 4 \quad \text{(1)} \] \[ xy = 12 \quad \text{(2)} \] 2. **Express \( x \) in terms of \( y \):** From equation (1), we can express \( x \) as: \[ x = y + 4 \quad \text{(3)} \] 3. **Substitute \( x \) in equation (2):** Substitute equation (3) into equation (2): \[ (y + 4)y = 12 \] Expanding this gives: \[ y^2 + 4y - 12 = 0 \quad \text{(4)} \] 4. **Solve the quadratic equation (4):** We can solve the quadratic equation \( y^2 + 4y - 12 = 0 \) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = 4, c = -12 \): \[ y = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} \] \[ y = \frac{-4 \pm \sqrt{16 + 48}}{2} \] \[ y = \frac{-4 \pm \sqrt{64}}{2} \] \[ y = \frac{-4 \pm 8}{2} \] This gives us two possible values for \( y \): \[ y = \frac{4}{2} = 2 \quad \text{or} \quad y = \frac{-12}{2} = -6 \] 5. **Find the corresponding \( x \) values:** For \( y = 2 \): \[ x = 2 + 4 = 6 \] For \( y = -6 \): \[ x = -6 + 4 = -2 \] 6. **Calculate \( x^3 - y^3 \):** We will calculate \( x^3 - y^3 \) using the values \( x = 6 \) and \( y = 2 \): \[ x^3 - y^3 = 6^3 - 2^3 \] \[ = 216 - 8 \] \[ = 208 \] ### Final Answer: The value of \( x^3 - y^3 \) is \( 208 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x^3-y^3 if x-y=4 and xy=21

Find the value of x-y , if 3x+4y=11 and 4x+3y=12 .

Find the value of x^(3)+y^(3)-12xy+64, when x+y=-4

Find the value of x:y, if (8x-10y)/(3x+4y) = (4)/(5) .

Find the value of : (i) x^(3)+y^(3)-12xy+64 , when x+y=-4 (ii) x^(3)-8y^(3)-36xy-216 , when x=2y+6

Find the value of : ( x / y )^x times ( y/x )^y , x = 4 , y = -7

Find the value of ( (x^-2 times y^-4 )/ ( x^-3 times y^-1) ÷ y^-2/x^-1 )

Find the value of (-4)^(6)times(-4)^(3)