Home
Class 14
MATHS
What is the simplified value of 1/(sqr...

What is the simplified value of
`1/(sqrt25 - sqrt24) - 1/(sqrt24 - sqrt23) + 1/(sqrt23- sqrt22) - 1/(sqrt22 - sqrt21) + 1/(sqrt21 - sqrt20)` ?

A

`5 + 2sqrt 5`

B

`5 – 5sqrt2`

C

`sqrt25 + sqrt21`

D

`sqrt""25 – 4`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ 1/( \sqrt{25} - \sqrt{24}) - 1/( \sqrt{24} - \sqrt{23}) + 1/( \sqrt{23} - \sqrt{22}) - 1/( \sqrt{22} - \sqrt{21}) + 1/( \sqrt{21} - \sqrt{20}), \] we will follow these steps: ### Step 1: Rewrite Each Term Each term in the expression has the form \( \frac{1}{\sqrt{n} - \sqrt{n-1}} \). We can rationalize each term by multiplying the numerator and denominator by \( \sqrt{n} + \sqrt{n-1} \): \[ \frac{1}{\sqrt{n} - \sqrt{n-1}} \cdot \frac{\sqrt{n} + \sqrt{n-1}}{\sqrt{n} + \sqrt{n-1}} = \frac{\sqrt{n} + \sqrt{n-1}}{n - (n-1)} = \sqrt{n} + \sqrt{n-1}. \] ### Step 2: Apply to Each Term Now we apply this to each term in the expression: 1. For \( \frac{1}{\sqrt{25} - \sqrt{24}} \): \[ = \sqrt{25} + \sqrt{24} = 5 + \sqrt{24}. \] 2. For \( -\frac{1}{\sqrt{24} - \sqrt{23}} \): \[ = -(\sqrt{24} + \sqrt{23}). \] 3. For \( \frac{1}{\sqrt{23} - \sqrt{22}} \): \[ = \sqrt{23} + \sqrt{22}. \] 4. For \( -\frac{1}{\sqrt{22} - \sqrt{21}} \): \[ = -(\sqrt{22} + \sqrt{21}). \] 5. For \( \frac{1}{\sqrt{21} - \sqrt{20}} \): \[ = \sqrt{21} + \sqrt{20}. \] ### Step 3: Combine All Terms Now we combine all these results: \[ (5 + \sqrt{24}) - (\sqrt{24} + \sqrt{23}) + (\sqrt{23} + \sqrt{22}) - (\sqrt{22} + \sqrt{21}) + (\sqrt{21} + \sqrt{20}). \] ### Step 4: Simplify Now, we can simplify by canceling out terms: - \( +\sqrt{24} \) and \( -\sqrt{24} \) cancel. - \( -\sqrt{23} \) and \( +\sqrt{23} \) cancel. - \( -\sqrt{22} \) and \( +\sqrt{22} \) cancel. - \( -\sqrt{21} \) and \( +\sqrt{21} \) cancel. After cancellation, we are left with: \[ 5 + \sqrt{20}. \] ### Step 5: Simplify \( \sqrt{20} \) We can further simplify \( \sqrt{20} \): \[ \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}. \] ### Final Result Thus, the final simplified expression is: \[ 5 + 2\sqrt{5}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?

The value of {1/((sqrt(6) - sqrt(5))) + 1/((sqrt(5) + sqrt(4))) + 1/((sqrt(4) + sqrt(3))) - 1/((sqrt(3) - sqrt(2))) + 1/((sqrt(2) - 1))} is :

The simplest value of (1/(sqrt9-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5))

The value of 1/(sqrt5-sqrt(5-sqrt(24)))+1/(sqrt5-sqrt(5+sqrt(24))

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is