Home
Class 14
MATHS
Find the value of (6sqrt2)/(5sqrt3)(sqrt...

Find the value of `(6sqrt2)/(5sqrt3)(sqrt2 + sqrt18)`

A

`(16sqrt3)/(5)`

B

`(26sqrt3)/(5)`

C

`(36sqrt3)/(5)`

D

`(46sqrt3)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{6\sqrt{2}}{5\sqrt{3}(\sqrt{2} + \sqrt{18})}\), we can follow these steps: ### Step 1: Simplify \(\sqrt{18}\) First, we simplify \(\sqrt{18}\): \[ \sqrt{18} = \sqrt{9 \times 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2} \] ### Step 2: Substitute \(\sqrt{18}\) back into the expression Now, we substitute \(\sqrt{18}\) back into the expression: \[ \sqrt{2} + \sqrt{18} = \sqrt{2} + 3\sqrt{2} = 4\sqrt{2} \] ### Step 3: Rewrite the original expression Now, we can rewrite the original expression: \[ \frac{6\sqrt{2}}{5\sqrt{3}(4\sqrt{2})} \] ### Step 4: Simplify the expression Next, we simplify the expression: \[ \frac{6\sqrt{2}}{5\sqrt{3} \cdot 4\sqrt{2}} = \frac{6\sqrt{2}}{20\sqrt{3}\sqrt{2}} \] Since \(\sqrt{2}\) is in both the numerator and the denominator, we can cancel it out: \[ = \frac{6}{20\sqrt{3}} = \frac{3}{10\sqrt{3}} \] ### Step 5: Rationalize the denominator To rationalize the denominator, we multiply the numerator and the denominator by \(\sqrt{3}\): \[ = \frac{3\sqrt{3}}{10 \cdot 3} = \frac{3\sqrt{3}}{30} = \frac{\sqrt{3}}{10} \] ### Final Answer Thus, the final value of the expression is: \[ \frac{\sqrt{3}}{10} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sqrt(18)xx sqrt(3)

find the value (6+sqrt(2))/(sqrt(6)+sqrt(2))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

The value of [sqrt2]+[sqrt3]+[sqrt5]

Find the value of (sqrt(sqrt(5)+sqrt(2))+sqrt(sqrt(5)-sqrt(2)))/(sqrt(sqrt(5)+sqrt(3)))

If x=3-sqrt(5) Then find the value of (sqrt(x))/(sqrt(2)+sqrt(3x-2))

find the value 5/(sqrt(2)+sqrt(3))-1/(sqrt(2)-sqrt(3))