Home
Class 14
MATHS
Find the value of y if (root(4)(y^8) )= ...

Find the value of y if `(root(4)(y^8) )= 225`

A

10

B

12

C

15

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt[4]{y^8} = 225 \), we will follow these steps: ### Step 1: Rewrite the equation using exponent notation The fourth root can be expressed as an exponent of \( \frac{1}{4} \). Therefore, we can rewrite the equation as: \[ y^{8 \cdot \frac{1}{4}} = 225 \] ### Step 2: Simplify the exponent Now simplify the exponent: \[ y^{2} = 225 \] ### Step 3: Solve for \( y \) To find \( y \), we take the square root of both sides: \[ y = \sqrt{225} \] ### Step 4: Calculate the square root Now, calculate the square root: \[ y = 15 \] ### Conclusion Thus, the value of \( y \) is: \[ \boxed{15} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of root4((32)^(8))

Find the value of y : y=4/5(y+10)

Find the value of y=(0.05246)^("1//8) .

Find the value of x:y, if (8x-10y)/(3x+4y) = (4)/(5) .

Find the values of (x-y) , if (i) 3x + 4y = 11 , 4x + 3y = 10 (ii) 3x + 2y = 8 , 2x + 3y = 7

Find the value of y, if 8:5 = y^(2) : 40 (y gt 0)