Home
Class 14
MATHS
What is the value of (cot 60^@ + 1//sqr...

What is the value of `(cot 60^@ + 1//sqrt3)`

A

`4//sqrt3`

B

`(2sqrt2 + sqrt3)//2`

C

`2//sqrt3`

D

`(2sqrt2 + 1)//sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to find the value of \( \cot 60^\circ + \frac{1}{\sqrt{3}} \). ### Step-by-step Solution: 1. **Find the value of \( \cot 60^\circ \)**: - The cotangent function is defined as the reciprocal of the tangent function. - Therefore, \( \cot 60^\circ = \frac{1}{\tan 60^\circ} \). - We know that \( \tan 60^\circ = \sqrt{3} \). - Thus, \( \cot 60^\circ = \frac{1}{\sqrt{3}} \). 2. **Add \( \frac{1}{\sqrt{3}} \) to \( \cot 60^\circ \)**: - Now we substitute the value of \( \cot 60^\circ \) into the expression: \[ \cot 60^\circ + \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \] 3. **Combine the fractions**: - Since both terms are the same, we can combine them: \[ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \] 4. **Final result**: - Therefore, the value of \( \cot 60^\circ + \frac{1}{\sqrt{3}} \) is: \[ \frac{2}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((1)/(3)-cot60^(@)) ?

What is the value of cot45^@ + frac(1)(3) cosec60^@ ? (A) sqrt3 + 2 (B) frac(9 + 2sqrt3)(9) (C) sqrt3 (D) frac(2sqrt2 +3) (sqrt6)