Home
Class 14
MATHS
What is the simplified value of 2 ro...

What is the simplified value of ` 2 root(3)(243) + 3 root(3)(9) - root(3)(1125)?`

A

`5sqrt(9)`

B

`4 sqrt(9)`

C

`7 sqrt(9)`

D

`11 root(3)(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 2 \sqrt[3]{243} + 3 \sqrt[3]{9} - \sqrt[3]{1125} \), we will follow these steps: ### Step 1: Simplify each cube root 1. **Calculate \( \sqrt[3]{243} \)**: - \( 243 = 3^5 \) - Therefore, \( \sqrt[3]{243} = \sqrt[3]{3^5} = 3^{5/3} = 3^{1 + 2/3} = 3 \cdot \sqrt[3]{9} \). 2. **Calculate \( \sqrt[3]{9} \)**: - \( 9 = 3^2 \) - Therefore, \( \sqrt[3]{9} = 3^{2/3} \). 3. **Calculate \( \sqrt[3]{1125} \)**: - \( 1125 = 3^2 \times 5^3 \) - Therefore, \( \sqrt[3]{1125} = \sqrt[3]{3^2 \cdot 5^3} = \sqrt[3]{3^2} \cdot \sqrt[3]{5^3} = 3^{2/3} \cdot 5 \). ### Step 2: Substitute back into the expression Now substituting these values back into the original expression: \[ 2 \sqrt[3]{243} = 2 \cdot (3 \cdot \sqrt[3]{9}) = 6 \sqrt[3]{9} \] \[ 3 \sqrt[3]{9} = 3 \sqrt[3]{9} \] \[ -\sqrt[3]{1125} = - (3^{2/3} \cdot 5) = -5 \cdot \sqrt[3]{9} \] ### Step 3: Combine like terms Now we can combine the terms: \[ 6 \sqrt[3]{9} + 3 \sqrt[3]{9} - 5 \sqrt[3]{9} = (6 + 3 - 5) \sqrt[3]{9} = 4 \sqrt[3]{9} \] ### Final Answer Thus, the simplified value of the expression \( 2 \sqrt[3]{243} + 3 \sqrt[3]{9} - \sqrt[3]{1125} \) is: \[ \boxed{4 \sqrt[3]{9}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

root(3)(2) times root(6)(9)

root(3)(2) times root(3)(4)

root(3)(2)+root(3)(16)-root(3)(54)

The value of ? In root(3)(0.064) = root(3)(0.027) div root(3)(?) is

The value of root (3)(500) xx root (3)(16) is