Home
Class 14
MATHS
what is the value of (1 // sqrt(3) + ...

what is the value of `(1 // sqrt(3) + cot 60^@)`?

A

`3 sqrt(3) //2`

B

`7 //2 sqrt(3)`

C

`(4 + sqrt(3)) // 2 sqrt(3)`

D

`2 // sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to find the value of \( \left( \frac{1}{\sqrt{3}} + \cot 60^\circ \right) \). ### Step-by-Step Solution: 1. **Identify the value of \( \cot 60^\circ \)**: - From trigonometric identities, we know that \( \cot 60^\circ = \frac{1}{\tan 60^\circ} \). - The value of \( \tan 60^\circ \) is \( \sqrt{3} \). - Therefore, \( \cot 60^\circ = \frac{1}{\sqrt{3}} \). 2. **Substitute \( \cot 60^\circ \) into the expression**: - Now, we substitute \( \cot 60^\circ \) back into the original expression: \[ \frac{1}{\sqrt{3}} + \cot 60^\circ = \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \] 3. **Combine the fractions**: - Since both fractions have the same denominator, we can add them directly: \[ \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{1 + 1}{\sqrt{3}} = \frac{2}{\sqrt{3}} \] 4. **Final answer**: - Thus, the value of \( \left( \frac{1}{\sqrt{3}} + \cot 60^\circ \right) \) is: \[ \frac{2}{\sqrt{3}} \] ### Conclusion: The final answer is \( \frac{2}{\sqrt{3}} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((1)/(sqrt(3))+cos60^(@)) ?

What is the value of ((1)/(3)-cot60^(@)) ?