Home
Class 14
MATHS
In the triangle ABC, the internal bisect...

In the triangle ABC, the internal bisector of angle A meets the side BC at D. If BD=7.5 cm and BC=9 cm. Then calculate the value of AB:AC.

A

2 :1

B

1 :2

C

5 :1

D

1 :3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Angle Bisector Theorem, which states that the ratio of the lengths of the two segments created by the angle bisector on the opposite side is equal to the ratio of the lengths of the other two sides of the triangle. ### Step-by-Step Solution: 1. **Identify the Given Information**: - Let \( BD = 7.5 \) cm - Let \( BC = 9 \) cm 2. **Calculate \( DC \)**: - Since \( BC \) is the total length of side \( BC \), we can find \( DC \) using the equation: \[ DC = BC - BD \] - Substituting the values: \[ DC = 9 \, \text{cm} - 7.5 \, \text{cm} = 1.5 \, \text{cm} \] 3. **Apply the Angle Bisector Theorem**: - According to the Angle Bisector Theorem: \[ \frac{AB}{AC} = \frac{BD}{DC} \] - Substituting the values we found: \[ \frac{AB}{AC} = \frac{7.5}{1.5} \] 4. **Simplify the Ratio**: - To simplify \( \frac{7.5}{1.5} \): \[ \frac{7.5 \div 1.5}{1.5 \div 1.5} = \frac{5}{1} \] 5. **Conclusion**: - Therefore, the ratio \( AB:AC \) is: \[ AB:AC = 5:1 \] ### Final Answer: The value of \( AB:AC \) is \( 5:1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC ,the bisector of angle A intersect side BC at D. If AB=12cm, AC =15cm and BC=18cm , then the length of BD is: triangle ABC में, angle A का द्विभाजक BC को D पर प्रतिच्छेदित करता है| यदि AB = 12cm, AC = 15cm और BC= 18cm है, तो BD की लंबाई है:

In Delta ABC with fixed length of BC, the internal bisector of angle C meets the side AB at D and meet the circumcircle at E. The maximum value of CD xx DE is

In a triangle ABC, angle bisector of angle BAC cut the side BC at D and meet the circumcircle of Delta ABC at E , then find AB .AC+DE. AE.

In a Delta ABC it is given AD is internal bisector of angleA . If BD=4 cm, DC=5 cm and AB=6 cm , then AC =?

In triangle ABC , angle A = 90^@ , AD is the bisector of angle A meeting BC at D and DE bot AC at E. If AB =10cm and AC = 15 cm, then the length of DE, in cm is: triangle ABC में angle A=90^@ , AD, angle A का द्विभाजक है, जो BC से D पर मिलता है, और DE bot AC से E पर मिलता है। यदि AB = 10 cm और AC= 15 cm है, तो DE की लंबाई(cm) है,

In DeltaABC,AD is the inernal besector of angleA . If BD = 5cm , BC=7.5 cm , then AB:AC=